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a strict stationary response. The general trend of the nonlinear interaction takes the form of energy
exchange between the interacted modes when the system is internally tuned. In the case of three-mode
interactions complex response characteristics are predicted in the form of multiple solutions and jump
phenomenon in a stochastic sense.

The experimental investigation is carried out on a two-degree-of-freedom model whose analytical
solution is known. When the first normal mode is externally excited by a band-limited random excitation
the system mean square response is found to be linearly proportional to the excitation spectral density
up to a certain level above which the two normal modes exhibit discontinuity mainly governed by the
internal detuning and the system damping ratios. These response characteristics are changed when the
second normal mode is externally excited. Under lower levels of excitation spectral density the response
is dominated by the second normal mode. When the excitation level increases the first normal mode
attends and interacts nonlinearly with the second mode in & form of energy exchange.

These investigations do not take into account the interaction between the aerodynamic forces on
one hand and the elastic and inertia forces on the other hand. The interaction with random aerodynamic
forces establishes the system nonlinear flutter and constitutes the second phase of this research project.
A new proposal for the second phase has been submitted to AFOSR for another three years support.
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ABSTRACT

/ The linear and nonlinear modal interactions in aeroelastic structures under wide band random exci-
tation are examined analytically and experimentally. The analytical investigation deals with the random
response characteristics of two- and three-degree-of-freedom nonlinear models in the neighborhood of in-
ternal resonance conditions. These conditions take the form of linear relationships between the normal
mode frequencies and are established from the linear modal analysis of each model. The Fokker-Planck
equation approach is used to derive a general differential equation for the response joint moments. In
view of the models nonlinearity the differential equation is found to constitute a set of infinite coupled
first order differential equations. These equations are closed by using two different truncation schemes
which are based on the properties of response joint cumulants. These two schemes are known as Gaus-
sian and non-Gaussian closures. The analytical manipulations are performed by using the computer
algebraic software MACSYMA, while the response statistical moments are determined by numerical
integration by using the IMSL sofiware DVERK. The Gaussian closure solution gives a quasi-stationary
response in the form of fluctuations between two limits. However, the non-Gaussian closure results in
a strict stationary response. The general trend of the nonlinear interaction takes the form of energy
exchange between the interacted modes when the system is internally zuned.xln the case of three-mode
interactions complex response characteristics are predicted in the form of multiple solutions and jump

phenomenon in a stochastic sense.

The experimental investigation is carried out on a two-degree-of-freedom model whose analytical
solution is known. When the first normal mode is externally excited by a band-limited random excitation
the system mean square response is found to be linearly proportional to the excitation spectral density
up to a certain level above which the two normal modes exhibit discontinuity mainly governed by the
internal detuning and the system damping ratics. These response characteristics are changed when the
second normal mode is externally excited. Under lower levels of excitation spectral density the response
is dominated by the second normal mode. When the excitation level increases the first normal mode

attends and interacts nonlinearly with the second mode in a form of energy exchange.

These investigations do not take into account the interaction between the aerodynamic forces on
one hand and the elastic and inertia forces on the other haud. The interaction with random aerodynamic
forces establishes the system nonlinear flutter and constitutes the second phase of this research project.

A new proposal for the second phase has been submitted to AFOSR for another three years support.
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SUMMARY OF MAIN RESULTS

L. Introduction

In an effort to understand the dynamic behavior of nonlinear aeroelatic structures under random exci-
tations a research project combines analytical and experimental investigatiors has been supported by
the Air Force Office of Scientific Research. Based on the original proposal (February 1983) and its

amendment (July 1984) three main objectives are considered. These are:

1. To investigate the autoparametric interaction in aeroelastic structures subjected
to wide band random excitation. Astoparametric wnferaction usually occurs if the
normal mode frequencies of the structure are commensurate (i.c. the normal mode

frequencies are governed by an algebraic relationship known as internal resonance.

2. To investigate the effects of damping and stiffness random fluctuations in the ab-

sence and in the presence of internal resonance.

3. To conduct an experimental investigation with the purpose of understanding com-
plex response characteristics and verifying the validity of theoretical results. The
experimental investigation is very valuable in demonstrating how the normal modes

are interacting under random excitations.

This report provides a brief summary of the main results of this research project during three- vear
period. The complete results are published in technical papers and presented at ASME, AIAA, IMAC.
and international meetings. Various aspects of the research project are well documented in two Ph.D.

dissertations and two Masters theses. Reprints of the technical papers are attached.

II. ANALYTICAL INVESTIGATION
L1 Two-Mode Interaction
The linear and nonlinear random modal interactions in two-degree-of-freedom aeroelastic structural
model are examined by using the Fokker-Planck equation approach together with two truncation schemes
known as Gaussian and non-Gaussian closures. A general differential equation describing the evolution
of the response statistical moments is derived for any moment order. For the case of linear modal
interaction this differential equation is found to be consistent (i.e. the number of unknowns is equal

to the number of the generated equations). The stationary response is determined for various system
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parameters. It is found that the linear interaction results in a suppression of one mode when the
uncoupled frequencies of the structure are close to each other. For the case of nonlinear modal interaction
(known as autoparametric coupling) the differential equation of the response moments forms an infinite
coupled set of first order differential equations which are closed by Gaussian and non-Gaussian closure
schemes. The Gaussian closure is known to be less accurate since it does not take into account the effect of
the response non-normality. The Gaussian closure scheme yields 14 coupled differential equations in the
first and second order moments of the response coordinates, while the non-Gaussian closure leads to 69
differential equations in the first through fourth order moments. The two sets of differential equations are
solved by numerical integration by using the IMSL (International Mathematical and Statistical Library)
subroutine DVERK (Runge-Kutta-Verner fifth and sixth numerical integration method). Both solutions
are presented in the time and internal frequency domains. The solutions exhibit common features such
as energy exchange between the two normal modes in the neighborhood of internal tuning. The Gaussian
solution gives a quasi-stationary response in the form of fluctuations between two limits. However. the
non-Gaussian solution resuits in a strict stationary response. The influence of random fluctuations in
the system damping on the response mean squares is found to be very small. The stiffness random

variation, however, shows to have a pronounced effect on the response mean squares.

1L2 Three-Mode lnteraction

The linear and autoparametric modal interactions in a three-degree-of-freedom structural model sub-
jected to wide band random excitation are examined by using the same approach described in section
IL1. For a structure with constant parameters the linear response is obtained in a closed form. When
the structure stiffness matrix involves random components the linear equations of motion. in terms of
principal coordinates, are coupled through parametric terms. The response is found to be governed by
the condition of mean squate stability. The boundary of stabie-unstabie responses is obtained as a func-
tion of the internal detuning parameter. The results of the linear system with constant coefficients are
used as a reference to measure the deviation of the system response when the nonlinear inertia coupling

is included. Four possible internal resonance conditions are derived. These are:

i. Combination internal resonance

wy = wy 4wy
ii. Principal internal resonance between the first and second modes

wy = 2w

3




iii. Principal internal resonance between the first and third modes

w3 = 2wy

iv. Principal internal resonance between the second and third modes

w3 = 2un

In the neighborhhood of combination internal resonance the Gaussian closure results in 27 differential
equations while the non-Gaussian closure yields 209 differential equations in the response joint moments.
The Gaussian solution exhibits two normal mode interaction when the condition of combination reso-
nance is slightly shifted. This unexpected result is scrutinized and it is found that the system possesses
principal internal resonance between the second and third modes when the three modes are not exactly
tuned according to condition (i). The non-Gaussian solution successfully predicts three-mode interaction
in the neighborhood of combination internal resonance. The autoparametric interaction occurs among
the three modes in such a manner that the mean square of the first two normal modes is always greater
than the linear solution while it is less for the third mode. This means that the nonlinear interaction
takes place between the first and second modes on one hand and the third mode on the other hand. A
new feature of considerable interest is the contrast in the form of the mean square response curves ahove
the exact internal detuning for a certain combination of system parameters and excitation level. This
is indicated by multiple solutions over a finite portion of internal detuning. The well-known saturation

phenomenon which usually occurs in deterministic systems with quadratic nonlinear coupling does not

take place in the present case since the excitation is random and includes a wide range of frequencies

which always excite the system normal modes.

For the case of principal internal resonances it is found that the response statistics are sensitive to small
excitation levels when the third and second modes are internally tune” dowever, the autoparametric
interaction is found to be only sensitive to a relatively high excitation spectral density under conditions
(ii) and (iii). The stochastic interaction of the three cases is characterized by irregular energy exchange

between the interacted modes.

III. EXPERIMENTAL INVESTIGATION

A series of experimental tests are conducted on a two-degree-of-freedom elastic model. The model is
subjected to a band-limited random excitation whose central frequency is very close to one of the two

normal mode frequencies of the model. The band width is selected such that no other higher modes are
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excited. The model normal mode frequencies are adjusted to have the ratio 2:1. This ratjo is equivalent
to the condition of internal resonance of the analytical model. When the first normal made is externally
excited the system mean square response is found to be linearly proportional to the excitation spectral
density up to a certain level above whi'“ the two normal modes exhibit discontinuity. The observed
discontinuity is mainly governed by the internal detuning parameter and the system damping ratios
The results are completely different when the second normal mode is externally excited. For small levels
of excitation spectral density the response is dominated by the second normal mode. Undet higher

excitation levels the first normal mode attends and interacts nonlinearly with the second mode.

The measured results reveal some deviations from the predicted results. The deviation is mainly at-
tributed to the fact that the experimental excitation is band-limited random excitation while it is as-
sumed wide band in theory. Experimentally it was not appropriate to apply wide band random excitation
which will excite higher modes not considered in the mathematical model. Another source of the devi-
ation occurs in the process of transformation into principal coordinates. In theory the transformation
is performed based on conservative linear system and a diagonal linear damping is introduced after

transformation.

IV. NEW RESEARCH DIRECTIONS

The work accomplished during this period did not include the interaction of aerodynamic forces with
elastic and inertia forces. This interaction accurately models the stochastic nonlinear flutter which has
not been examined in the open literature. Although the results obtained from this research project
are new and essential in providing more understanding to the response of nonlinear dynamic systems to
random excitations, it is very important to examine the effects of nonlinear interaction with aerodynamic
forces. A new proposal for three years support has been submitted to the AFOSR. The new proposal
will examine the nonlinear stochastic flutter in subsonic and supersonic flight regimes for two basic
models: a cantilever wing and a flat panel. The effect of Mach number on the response mean squares
in the neighborhood of internal resonance will be determined. The analysis will be performed by using
the computer algebraic manipulation software MACSYMA on SUN 3/260 computet at the Nonlinear

Vibration Labaratory of Wayne State University.
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Reprinted from October 1986, Vol. 108, Journal of Vibration, Stress, and Reliability in Design

Autoparametric Vibration of
nawanm | Goupled Beams Under Random
w o | Support Motion

H. Heo The dynamic response of a two degree-of-freedom system with autoparametric

° coupling to a wide band random excitation is investigated. The analytical modeling

Graguats Student. includes quadratic nonlinearity, and a general first-order differential equation of the
moments of any order is derived. It is found that the moment equations form an in-

Texas Tech Uneversity, Jfinite hierarchy set which is closed via two different closure methods. These are the

Oepartment of Mechamcal

Gaussian closure and the non-Gaussian closure schemes. The Gaussian closure solu-

Lubbock, TX 79409 tion shows that the system does not reach a stationary response while the non-
Gaussian closure solution gives @ compiete stationary steady-state response. In both
cases, the response is obtained in the neighborhood of the autoparametric internal
resonance condition for various system parameters.

Introduction

The paper deais with the autoparametric random response
of a system of coupled beams to a random support motion.
The system resembles an analytical model of aeroelastic struc-
tures such as aircraft wing with fuel storage. The study of ran-
dom response of acroelastic structures has frequently been
considered within the framework of linear coupling between
two or more degrees of freedom. It involves the combinati

tions about the limt cycle soiution. The excitation was
represented by a random field. The panel motion was de-
scribed by a coupled set of linear nonhomogeneous differen-
tial equations with harmonic coefficients. The study was ex-
tended 10 determine the response of the panel under nonlinear
aerodynamic loading in the absence of any random compo-
nent. Two mechanisms were considered. The first is the

of structural dynamics and the theory of hastic pr

The linear modeling gives the response of the system in the
neighborhood of the equilibrium position. However, complex
response characteristics such as multiple solutions, jump
phenomenon, internal resonance, and limit cycles can only be
predicted if the inherent nonlinearities of the system are
considered.

The flutter problem of two- and three-dimensional plates
undergoing limit cycle oscillations in a high supersonic flow
was examined by Dowell {1]. The nonlinear membrane forces
induced by the plate motion resulted in bounded plate
amplitude. In a series of investigations (2-4]. Dizygadlo
analyzed the coupled parametric and self-excited (flutter)
vibrations of plates subjected to periodic varying in-plane
forces. In supersonic gas flow, it was found that the instability
region of the harmonic resonance shrinks and shifts toward
higher excitation frequencies and amplitudes as the Mach
number increases.

Eastep and Mcintosh (5] investigated panels flutter under
random excitation and linear aerodynamic loading. The limit
cycle osciflation was determined by representing the modal
amplitude by s Fourier series and applying the Galerkin
averaging for temporal solution. The existence of a limit cycle
was predicted by studying the stability state of small perturba-

C by the Techmical C. on Vi and Sound
prossmted ot the Design B Comf [« i, OO,
Septamber 10-13, 198S of Tws SocmrY or M

d s ASME Jasnary |, 1985, Paper No.

83-DET-18.

Journal of Vibration, Acoustics, Stress, and Reliability in Design

linear interaction between in-plane panel stresses and
transverse transformation. This interaction provides a stabiliz-
ing influence on the panel in that it acts to restrain further
deformation. The second is the nonlinear acrodynmic loading
which has a destabilizing effect.

Nonlinearities may enter the vibrating system through
geometric or physical sources. The geometric nonlinearities
are identified by large deformation. Physical nonlineanties
arise from the nonlinear nature of the physical properties of
the material itself. These nonlinearities appear in the cqua-
tions of motion in three possible forms: elastic, inertia and
damping nonlinearities. Elastic nonlinearity stems from
nonlinear strain displacement relations which are inevitable.
Inertial nonlinearity are derived, in a Lagrangian formulation,
from the kinetic energy. A general and fairly comprehensive
description of the role of nonlinear modal interaction under
harmonic excitation was given by lbrahim and Barr (6] and
Barr {7). It was indicated that nonlinear mode interaction may
give rise 10 what are effectively parametric instability
phenomena within the system. The parametric action is not
due (0 the external loading but to the motion of the system
itself and, hence, is described as ‘‘autoparametric.”’ One of
the main features of autoparametric coupling is that resp
of one part of the system give rise to loading of another part
through time-dependent coefficients in the corresponding
equation of motion. With sutoparametric coupling the system
may experience instability of internal resonance. Internal
resonance can exist between two or more normal modes
depending on the degree of nonlinearity admitted into the
equations of motion. Thus, with quadratic nonlinearities, two

OCTOBER 1986, Vol. 108/ 421
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modes i and j having linear natural frequencies w, and w, are in
internal resonance if w, = 2w, or three modes /, j, and & can be
in internal resonance if w, = lw, 2w, . With cubic nonlinearity
two modes ;i and j can have internal resonance of the type
w, =(1/3W; or w; =(2/3);. Autoparametric interaction may
arise in many aeroelastic configurations such as airplane wing
with a store [8] or a Tee-tail plane in bending {9). The deter-
ministic response of systems with autoparametric nteraction
has been reviewea by Ibrahim [10, 11) and are weil
documented by Evan-Iwanowski [12) and Nayfeh and Mook
{13},

The first treatment of the autoparametric random interac-
tion is believed to be due to Ibrahim and Roberts {14]. The dif-
ferential equations of the system response moments were
found to be coupled with higher-order moment terms. In other
words, the moment equations form a set of infinite hierarchy.
The equations were closed by expressing third and fourth-
order moments in terms of lower-order moments based on the
assumption that the response process is *‘nearly’’ Gaussian.
The steady-state squares responses were found to behave
quasi-stationary in the time domain in the neighborhood of
the internal resonance condition w, =0.5,. It is known that
the result of any linear operator, with constant coefficients,
applied 10 a random Gaussian process results in 2 Gaussian
process. However, if the operator is nonlinear, the resulting
operation will not be Gaussian. Consequently, it is important
to consider the effect of the non-normality of the response of
systems involving nonlinearities. Schmidt [15] employed the
Stratonovich stochastic averaging method to determine the
resp of a sy with parametric interaction. Con-
trary to the results of Ibrahim and Roberts, Schmidt found
that the system response possesses a stationary probability
density function. The discrepancy of the two results motivated
the authors to employ the non-Gaussian closure (used recently
by Wu and Lin {16}, Lin and Wu {17}, and Ibrahim and Soun-
dararajan {18]) to determine the response of an aeroelastic
structure in the neighborhood of internal resonance. The
method leads to a stationary response for all response
moments considered in the analysis.

Theoretical Analysis

Figure | shows a schematic diagram of an airpiane wing
with fuel storage. The wing and the storage are modeled by
equivalent two beams having stiffnesses k, and k,, and end
masses m, and m,, respectively. Under random support ac-
celeration £(¢) the wind end moves vertically (g,) and. under
the conditions of internal resonance, the mass m, moves
laterally (g,). The mathematical modeling can be derived via
the Lagrangian formulation. Both the axial and lateral com-
ponents of the velocity of the wing and the fuel storage are in-
cluded in determining the kinetic energy and, by using the
static deformation curve of the cantilever, these components
are found to be in the ratio 6q,/5/,, where /, is the length of
beam /. The equations of motion in terms of the generalized
coordinates q; are {9)

[ my +my(l +2.25(3/1,) 1.5myly /1, ] {q‘. }

1.5myly/1, m; G2

k O q, my+m,
o W) {707
0 k& q: 0

[z.z.sm,l,/lf 1.5my/1, ] {q. ¥
~£(n }""z{ }
1.5my /1, 1.2my/1, q V2 "
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where

/ . [/ 1.2 L
¥, =09 _/z:— .14, +0.45 T: g+ . (q:4: +q3)
0.3 .3 .
+-I_ 04, *’I—(m% +4,492)
! ]
0.3 . 12, 12 .
123 T QG T AT 4
1 1 2
k,=3E1/ (2)
It is seen that the left-hand side of equations (1) represents
the linear conservative part of the equations of motion. This
part involves dynamic coupling. The first term on the right-
hand side is the nonhomogeneous random excitation £ (7}, the
second term constitutes the parametric effect of the excitation,
¥, and y,, in the third expression, include all quadratic
nonlinearities. The linear eigenvalues and cigenvectors of
system (1) are determined by setting the right-hand side to
zero. The eigenvectors are used in establishing the linear
transformation into the principal coordinates Y, i.e.

lgi=[RI[Y] 3

where [R] is the modal matrix which is given in the Appendix.
Premultiplying equations (1) by [R]~' [m]-!, where [m] is
the mass matrix, and introducing transformation (3) gives

I R A ),
Lo s {0
o (o {i)
awolri ) e

where a linear viscous damping is incorporated, and r =
wq/w, is the ratio of the normal mode frequencies. The non-
dimensional principal coordinates Y, and Y, are related to the
dimensional principal coordinates y, and y, through the
relationship

Y, =ty nl/q (5)
where ¢ is the response root mean square of the system when
the length of the vertical beam shrinks to zero, i.e., the
response of the wing beam with end mass (m, + m,). A prime
denotes differentiation with respect to the time parameter r =
wyt. The nonlinear functions ¥, and ¢, are

Vima Y\ Y +a, Y, Y]+a. Y ¥ +a, Y, Y +a, Y7

+a Y Y +a, Y3
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Va=b Y, Y+ b Y Y+ b Y, Y+, Y, Y+ b Y2
+beY[Yi+ b, Y
e =q/1, (6)

The coefficient g, and b; depend on the system parameters.

Expressions (6) include all quadratic nonlinear terms which
can be divided into two classes: nonlinear terms of the same
mode and autoparametric terms such as Y;Y;. The auto-
parametric terms give rise to the internal resonance condition »
= w/w, = 0.5,

The random acceleration £ ° (7) is assumed to be Gaussian
wide band random process with zero mean and a smooth spec-
tral density 2D up 1o some frequency which is higher than any
characteristic frequency of the system. If the acceleration
terms are removed from the nonlinear part of equations (4) by
successive elimination, equations (4) may be approximated by
a set of [to’s equations and the response coordinates constitute
a Markov process. Introducing the coordinate transformation

1YL YY) = XXX, X ) [&)]
equations (4) can be written by the following set of Ito’s
equations:
X=X,

X=X,

Xi= =X\ =20 X) ~a X} —(@g + rPag) X, Xy - rra. X3
~20a0 X\ Xy - 25500, X\ Xy - 2818, Xy Xy — 28300, X2 X,
+a X3 + X1 X + a0 X3~ (A, + A1 X + A; X, + A X}
+AX X, + AW ()

Xi= =Xy = 200X, - b, X} — (b + PROOK, X,

b, XY~ 25,b,X, Xy = 23rb X, Xy - 2, 06X X

= 25rD1. X Xy + g X3 + by Xy X + b0 X3

= (B +8,X, + ByX; + B X} + By X\ Xy + B X)W (1)
8)

where the coefficients 4, and 8, depend on @, and b,.

In equations (8), the random acceleration has been replaced
by the white-noise process W(r) where the Wong-2akai (19]
correction term is zero. The autocorrelation function of W(r)
is defined by the well-known refation

R, (r"Y=EIW(r)W(r+71')]=2D8(7") )

where 2D is the spectral density, and &( ) is the Dirac delta
function.

In view of the complexity of the state equations (8) it is not
expected to obtain a stationary solution for the corresponding
Fokker-Planck equation. Instead, it is possible to generate a
general differential equation for all possible moments by using
the Ito stochastic calculus [20] or the Fokker-Planck equation
[21]. It is not difficult to show that the differential equation of
the response joint moments is given in the form

LR TRRTE S| TTTRE 2 . PR
—25m; =@My a1y (P
FAIM ks =Py k=28 @amy s ki
=20ramy g ga-vier = 25086M g u
S L T PRTIRINE Y- N NRYEY N
@My gl H APy = 2rm,
~bimy .z ps — (PO +DIM, Ly ks

=PRBam, i ~20DaMi ke
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~25rbsm; g e~ 25006M, 4o ik ia-

~255r0amy i Oy g DMy

+byodm )+ k (k= V)DAm, o,

+2DAAym, g2+ 2DAAYM, g2+ D2AA,

+A§)m,,,./',_zJ+2D(A,A, +AAYmi+ 1, j+1k=2,

+D(AF+24,Am, .y 4 2 ) +KIRDABim, -,

+2D(A, B, + A B)my, 14 +2D(A By

+ABYM g +2D(A B+ AB,

+AB)IM s iy +2D(ABs + AsB, + A, By

oM k-1 +2D(A3 By + A B

+ABIM, ko )+ U= DIDBmy,

+2DB\Bym; .\ -2 +2DB\Bym, .\ 4,2+ D(28,B,

+BM o s+ 2D(B, B+ BydBym, .\ Ly

+D(B} +2B,Bym, . 244-2) ]
where the definition

m,,,,=§_a .. .5X]X§X§Xﬂp(X,r)dX,. . .dX,

= EIX X2 X5 X.)

has been adopted.

It is seen that a moment equation of order n=i+j+k +/
contains moments of order # and n + 1. In order to solve for
the steady-state response the moment equations must be clos-
ed. The response moments will be determined by using Gaus-
sian and non-Gaussian closure schemes.

Gaussian Closure Solution

From the general differential equation (10), one can
generate four equations for the first-order moments and ten
equations for the second-order moments. These equations are.
however, coupled through third-order moment terms. [n this
section, the 14 equations will be closed by making the assump-
tion that the system nonlinearities are too small to the extent
that the response can be regarded as nearly Gaussian. In this
case, the cubic semi-invariants vanish and third-order moment
terms can be written in terms of lower-order moments, i.e.

3
MIXX X ) =EX XX~ L EXEXX,)
+ 261X EIX,|E1X,] =0 an

where the number over the summation sign refers to the
number of terms generated by the indicated expression
without allowing permutation of indices.

The closed 14 coupled equations are solved numerically by
using the IMSL-DVERK Routine (Runge-Kutta-Verner fifth
and sixth-order numerical integration method). The transient
and steady-state responses of the system mean square
displacements £]Y3] and £ Y3] are piotted in Fig. 2 for inter-
nal resonance ratio 7 = 0.5, mass ratio m,/m, =0.2, beams
length ratio /,//, = 0.6, and ¢ = 0.02. It is seen that the
steady-state response fluctuates between two boundaries
which will be referred to as lower and upper limits. Repeating
the numerical integration for various values of the internal
resonance parameter 7 = 0.5 + ¢, one can examine the effect
of the system parameters upon the response mean squares.

The effect of damping ratios {, and {; is shown in Fig. 3(a).
It is seen that the region of autoparameteric interaction
becomes wider as the damping ratios decrease. Figure 3(b)
shows the influence of the nonlinear coupling e. For very small
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€ the system does not reflect any autoparametric coupling for
the whole range of internal resonance ratio. As e increases the
system enters the region of autoparametric interaction, This
region becomes wider as ¢ increases. The effect of the mass
ratio is shown in Fig. 3(c).

Non-Gaussian Closure Solution

Since the system is nonlinear, the response process is not
Gaussian distributed and the corresponding third and higher-
order semi-invariants will not vanish. These higher semi-
invariants give a measure to the deviation of the response from
normality. However, their contribution diminishes as their
order increases if the process is slightly deviated from Gaus-

2
'l'll
vof e, 4
'S - e -
o5l
125
0
ul) ——
0.4} 4
4

Fig. 2 T and steady-stat based on G
closure solution; (r = 0.5, {4 = [; = 0.02, myimy = 0.2, ¢ = 0.02

sian. Thus one can establish a beiter approximation if fifth
and higher-order semi-invariants will be equated to zero, i.c.

A X X X X1 X ) = ELX X, X X1 X )
S
- ¥ ax)exx.x.x.)

10

+2 Y, EIX)ELXIELX, XX ]

10

-6 1 ELX)EWXIEIXIELX,X.)

15

+2 1 EIXIELX X, JEIX X

- ¥ Bx.X)EX, XX
+ UEXELX JELX JELX JELX ] =0 (a2

From equation (10), one can generate moment equations of
order up to four. This will result in 69 equations which are
coupled and contain fifth-order moment terms. Repiacing
fifth-moment terms in terms of lower-order moments by using
relations (12), the 69 equations will be closed. The resuiting 69
coupled differential equations are sotved numerically by using
the IMSL-DVERK subroutine. Figure 4 exemplifies the time
history response of the displacement mean squares for internal
resonance ratio r = 0.5 and damping ratios {, = {; = 0.02.
During the transient period the mean square of the first nor-
mal mode displacement grows uatil it reaches a peak value at 7
= 60 then drops to a lower level at r = 150. The mean square
of the second normal mode displacement grows much slower
until it reaches it peak at r = 150 which is the time at which
the first normal mode mean square reaches its minimum
value. This feature reflects the fact that the two normal
modes exchange energy during a transient period after which
cach mode shows a complete stationary response. Unlike the
Gaussian closure solution described in the previous section,
the non-Gaussian closure solution brings the system into a sta-
tionary state. The stationarity of the solution is confirmed by
setting the left-hand sides of the closed 69 equations to zero

2 [ ek, o eiv?)
BN [T 2L (g 2
Lst Jo.s
Lof 0.2
o.sf 0.1
oo \ § e,
oz \ \ : R ~lo
0.43 0.3 0. 0.43 0.5 0.55  0.43 0.3 0.38 r

@ -’/-1 ® 0.2, ¢ »0.02

®) ¢y = ¢, = 0.02

(e) Hh" 0.002

-1,.1 - 0.2 s =0.02

Fig.3 G
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and the resulting nonlinear aigebraic equations were solved
numericaily by using the ZSCNT subroutine which is basically
the Secant method for simultaneous nonlinear equations. The
algebraic solution is found identical to the stationary solution
obtained by numerical integration. Originally, the authors
tried to obtain an algebraic soiution for the 14 equations
closed by the Gaussian closure scheme. However, the solution
did not converge for ail possible guessing values. This shows
that the Gaussian ciosure scheme is not adequate to model the
system nonlinearity and thus results in a2 nonstationary solu-
tion. The validity of the stationarity was previously verified by
Schmidt {15] who obtained a stationary solution of the

2
tyl ,
1.04 4
0.5k 4
0.0 —_
, -
E(Y,]
0.02 b W
0.01 1 ﬁ
0.0
° 50 100 150 200 1400 1500

Fig. 4 Transient and steady-state responses based on non-Gaussien
closure solution; (r = 0.5,y = {3 = 0.02, myimy = 02, ¢ = 0,02

Fokker-Planck equation of a nonlincar two-degree-of-
freedom system via the stochastic averaging method.
However, Schmidt did not determine the constant of integra-
tion from the normalized condition.

The numerical integration of the 69 closed differential
resonance ration 7=0.5+¢. The influence of the damping
ratios, nonlinear coupling parameter ¢, and mass ratio are
shown in Figs. 5(a-c), respectively. The effect of these
par s on the resp mean squares is similar to their ef-
fect in the Gaussian solution curves; however, the response
curves have one branch which is located within the limiting
curves of the Gaussian solution.

Counciusions

The random response of a coupled beam system with
quadratic autoparametric interaction is investigated in the
neighborhood of the critical region of internal resonance. A
general differential equation of the response moments of any
order has been derived and found (o represent an infinite
hierarchy set. Two closure techniques have been employed.
These are the Gaussian and non-Gaussian closures. The Gaus-
sian closure led 1o a set of 14 coupled nonlinear equations for
the first and second moments of the system responses. The
non-Gaussian closure gave 69 coupled nonlinear equations for
the first through fourth moments. The two sets of differential
equations were solved by a numerical integration algorithm.
The Gaussian closure solution led to a nonstationary response
for all even order moments while the non-Gaussian closure
solution showed that the system reached a stationary state.
The influence of the system parameters upon the response
mean squares were examined over a range of internal
resonance within which the system autoparametric interaction
took place.
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Stochastic modal interaction in linear and nonlinear
aeroelastic structures

R. A. Ibrahim and Z. Hedayati*

Texas Tech. University, Department of Mechanical Engineering, Lubbock, Texas 79409. US A

The linear and autoparametric modal interactions in a three defree-of-freedom structure under
wide band random excitation are examined. For a structure with constant parameters the finear
response is obtained in a closed form. When the structure stiffness matrix involves random
fluctuations, the governing equations of motion, in terms of the normal coordinates, are found to
be coupled through parametric terms. The structural response is mainly governed by the condition
of mean square stability. The boundary of stabie-unstabie responses is obtained as a function of
the internal detuning parameter. The results of the linear system with constant parameters are
used as a reference to measure the deviation of the system response when the nonlinear inertia
coupling is included. In the neighbourhood of combination internal resonance the system random
response is determined by using the Fokker Planck equation approach together with the Gaussian
closure scheme. This approach results in 27 coupled first order differential equations in the first
and second response moments. These equations are solved numerically. The response is found to
deviate significantly from the linear solution when the system internal detuning is close to the exact
internal resonance. The autoparametric interaction is found to depend significantly on the system
damping ratios and a nonlinear coupling parameter. In the vicinity of combination internal
resonance, the second normal mode mean square exhibits an increase associated with a

corresponding decrease in the first and third normal modes.

I. INTRODUCTION

The modal analysis of aerolastic structures is usually
carried out by using one of the available computer codes
for eigenvalues and eigenvectors. These computer
algorithms are useful in determining the structural
dynamic behavior under various types of excitations. The
first step usually involves the determination of
eigenvalues and cigenvectors. With this information one
can determine the linear response to deterministric or
random excitations. For systems with constant
parameters the mean square response to external white
noise is linearly proportional to the excitation spectral
density. If the excitation is acting parametricaily to the
system the equilibrium state could be stable or unstabie in
a stochastic sense. In certain situations the structure may
not behave according to the linear theory of small
oscillations and a number of complex response
characteristics such as amplitude jump, internal
resonance, saturation phenomenon, and chaotic
motion'? may be observed. These new characteristics
owe their origin to the system inherent nonlinearities
which should not be ignored in dynamic analysis.

In aircraft structures several types of nonlinearities
have been reported. Breitbach® classified structural
nonlinearities into distributed and concentrated.
Distribution nonlinearity is induced by elastic
deformation in riveted, screwed and bolted connections

* Currently PhD stud M h Insti of Technology.
Department of Mechanical Engineering, Cambridge. MA 02139, USA
Received September 1986, Di ion closes February 1987.
0266-8920/86/040182-1082.00

© 1986 Computational Mechanics Publ;

as well as within the structural components themselves.
Concentrated nonlinearity acts {ocally lumped in control
mechanisms or in the connecting parts between wing and
external stores. This nonlinearity results from back-lash
in the linkage elements of the control system, dry friction
in control cable and push rod ducts. kinematic limitation
of the control surface deflection, and application of spring
tab system provided for relieving pilot operation.
Breitbach* determined the flutter boundaries for three
different configurations distinguished by different types of
nonlineanties in the rudder and aileron control system of
a sailplane. It was shown that the influence of hysteretic
damping results in a considerable stabilizing effect and an
increase in the flutter speed. However. this special type of
non-linearity does not bring the structural response into a
bounded limit cycle. Similar effects of nonlinearities due
to friction and back-lash were considered by De Ferrari et
al.’, Peloubet et al.°, Reed er al.” and Desmarais and
Reed® examined the effects of control system
nonlinearities, such as actuator force or deflection limits,
on the performance of an active flutter suppression
system. It was shown” that a nonlinear system which is
stable with respect to small disturbances may be unstable
with respect to large ones. Another important feature was
that a store on » pylon with low pitch stiffness can provide
substantial increase in flutter speed and reduce the
dependency of flutter on the mass and inertia of stores
relative to that of stiff-mounted stores.

In structural dynamics, the nonlinearity may take one
of three classes®'®: elastic. inertia, and damping
nonlinearities. Elastic nonlinearity stems from nonlinear
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strain-displacement relations which are inevitable. Inertia
nonlinearity is derived. :n Lagrangian formulation, from
the kinetic energy. In muiti-degree-of-freedom systems
the normal modes may involve nonlinear inertia coupling
which may give rise to what are effectively parametric
instability phenomena within the system. The parametric
action is not due to the external loading. as in the case of
parametric vibration, but to the motion of the system
itself and, hence, is described as autoparametric’'. The
main feature of autoparametric coupling is that responses
of one component of the structure give rise to loading of
another  component  through  time-independent
coeflicients in the corresponding equation of motion. The
deterministic autoparametric interactions in two and
three freedom systems were examined by Barr and
Ashworth!?, Haddow et al.!?, Ibrahim et al.'4, and
Ibrahim and Woodal'®. These studies have shown that
the mode which is externally excited exhibits a saturation
phenomenon in which energy is transferred to other
modes involved in the nonlinear coupling. The stochastic
aspects of parametric and autoparametric vibrations have
recently been documented in. a recent research
monograph by Ibrahim'®,

To the authors’ knowledge the random response of
systems with autoparametric coupling has been restricted
to two-degree-of-freedom systems. This paper deals with
the linear and nonlinear modal interactions of a three
degree-of-freedom aeroelastic structure subjected to
random excitation. The deterministic responses of this
mode! under various internal resonance conditions
Ykw;=0 (where k, are integers and w; are the system
normal mode frequencies) have been determined by
Ibrahim et al.'*'*. The system involves quadratic
nonlinear inertia which couples the system normal
modes. It was shown that under principal internal
resonance. the mode which is directly excited is
suppressed and energy is transferred to the other mode.
When the structure possess combination internal
resonance of the summed type the normal mode
amplitudes did not achieve a steady state and the
response is characterized by energy exchange between the
three modes.

The main objectives of this paper are to present the
linear, parametric and autoparametric random responses
of the same aeroelastic model considered in Refs 14 and
15. The mean square responses will be evaluated for a
model with constant parameters and for a model with
random variations in its stiffness matrix. The nonlinear
random response of the system in the neighbourhood of
combination internal resonance of the summed type will
be determined by using the Fokker Planck equation
approach together with a Gaussian closure scheme. The
effects of the system nonlinearity and damping
coefficients on the mean square responses will be
examined.

1. BASIC MODEL AND EQUATIONS OF
MOTION

Fig. 1 shows a schematic diagram of an analytical model
of an aircraft subjected to random excitation F(t). The
fuselage is represented by the main mass m,, linear spring
K4, and dashpot C,. Attached to the main mass on each
side are two coupled beams with tip masses m, and m,,
stiffnesses K, and K, and lengths [; and /,. In the analysis

— ! 7.
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-
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Fig. 1. Schematic diagram of uan aeroelustic Structure
und Coordinate System

of the shown system only the symmetric motions of the
two sides of the model are considered. Under random
excitation the system response will be described by the
generalized coordinates ¢,. ¢,. and g; as shown in the
figure. The equations of motion are derived by applving
Lagrange’s equation
d {(’Ll

‘(’Ll_ , ,
ar a‘—it— =210:c! oy

cq
where L=T-V. )
The kinetic energy T is given by the expression’

1 VY., 1
T=§{ml+m2[l+<f) ]}q;+§mzq3

{ Ly 3maly
‘*‘;""1‘*‘”’2*"”3)43*——,[ d192
2 2,

.. 9’"112 .3 .o
+imy +ma)di4y + 3o 444 +5¢,4143)
~Y

Iy (@dndz
T B s+ diaady + dian
~

6m .

+ o (gad2ds + 414292 =)
ST,

where a dot denotes differentiation with respect to ume ¢
Neglecting the gravitational effects. the potential energy
V' is given by

V=1 21(k,q} +k,q3 +ksq3) (3
Substituting for T and V in equation (1), and considenng
Fir) as the only nonconservative force tdamping forces

will be introduced later) results in the equations of motion
in terms of the nondimensional coordinates ¢,

my, my; My q, ky 0 0 ‘h]
wf | my my, 0 4: )} +|0 &k 0 d2
myy 0 my, 93 0 0 & QsJ
1 0 1 myq il w:'
=—1{0 _#2 v, h
i F(t/w,)J ! w—,
where
4i=4:/93 T=w;sl

q3 is taken as the root-mean-square of the main mass
when all other parts are locked under forced excitation,
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wy is taken as the third eigenvalue of the system, and
myy=my +my[1+2.25(,,1,)*]
my;=m,
myy=m, +m,+m,
myy=15mylly 1)

myy=m;+m,

¥y =my[0.450,5)24,d, + 3 +54,dy)
+1 1-5/11)(0~24‘é2+4143 +24,4, +24:4,)
+(l.2,’12)(q221'2+1'1§) (5)

where a prime denotes differentiation with respect to the
dimensionless time 7.

II1. EIGENVALUES OF THE SYSTEM

The system eigenvalues are determined from the
conservative linear part of the equations of motion

(mi{q} +[kI{q} ={0} (6)
The characteristic equation of (6) is
Det|[k] - w’[m]| =0 ™

where w is the eigenvalue of the mode in question.
Expanding the determinant gives the cubic equation

(-1+ miy ,_mis )(iy{(@)’

my My My M3 /\Wss W3

Az (1) (o i)
W33 my Mss myym;y/ \wsys
(B (e (5 () N
W33/ \Wi3 W23 W33 W3y
+(“ﬂ>z(‘ﬁ)z=o (8)
W33/ \ W3y

where the frequency parameters w,=K,/m,, are the
natural frequencies of the individual components of the
structure. The IMSL (International Mathematical and
Statistical Library) Subroutine ZPOLR (Zeros of a
Polynomial with Real Coefficients) is used to find the
roots of equation {8) numerically. Fig. 2 shows a sample
of the dependence of the natural frequency ration r=w,/
(w, +w,) on the ratios @, /w33 and w,, /w,, for beams
length ratio l, /1, = 0.25, and mass ratios m, /m, = 0.5, and
my/m, =5.0, Other sets of curves for different system
parameters are obtained and reported in Ref. 17. The
importance of these curves is to define the critical points
where the structure possesses internal combination
resonance r = 1.0. [t is seen that the most critical region is
located for the curves of w;;/w,y3=1 and 2. For the

analysis hereafter the following parameters will be used:
1,/1,=0.25, wy, /w33 =14

1V. TRANSFORMATION INTO NORMAL
COORDINATES

Equations (4) include linear and nonlinear dynamic
couplings. The linear coupling is ecliminated by
transforming equations (4) into normalized coordinates

n ] N [

Fig. 2. Dependence of frequency ratio on system
parameters for 1,1, =025, m, m; =05, mym,=5

Y., by using the transformation
g =[R]lY] 9

where [R] is the modal matrix consisting of the
normalized eigenvectors.

L1 1
[R]=]n ny ny 110)
Ry oAy Ay
the elements of matrix (10) are determined by using the
decomposition method'® and are listed in Ref. 17.

Rewriting equations {4) in the matrix form and using
transformation (9) gives

(m][RUY"} +[KI[RU Y} =Fi =¥ (D
Premultiplying equation (11) by the transpose of the
modal matrix results in diagonalizing the mass and

stiffness matrices. The resulting equations involve
nonlinear coupling and have the form

M, 0 0 v ky 00 (v,
mwil0 My, 0 vitek [0 ko |dis
0 0 Myl 0 0 kzdiyy
1 I:IF(‘t/w3) I v, l (12
=4 ]’sz(T/ws) = Wz'
nyFit/ws) [
where

My=1+2(1+2.258% +38n,+ 2n,+ni +n?)
+{1+my/ ;m)]at + 2

k=14 1(ky sk In} + (ky 'k )n}

Vo= yillyyyy + Layya+ L)
+y3Liayy + Ly + Liagys)
+¥3Luayy +Liasyr +Lasys + Liasys)
FMyyP o+ Mgy + Mogyyy
+MiLyya+ My + Magyysys
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AN > A

2=my my. g=1 1,

Lijk =0.98 +2.258n, +0.3n, + 1.5n,5, + 3n,
+(1.2/Bmm, +nf0.3+ 153, +(1.2/BIn g1 +a,))
+a{2.258+1.5(n,+n)+(1.2fnn,]

M =098 +3(n;+nc)+(2.4/8nn,
= 24nm+A[4.56 + 3(n;+ny )+ (2.4/ﬁ)n,nk]
(j#k)

M, =0458 +3n,+(1.2/fn}
—1.2n,+A{2.258 + 3n,+ (1.2/B)nE]
=k=D (13)

V. DYNAMIC MOMENT EQUATIONS

The response coordinates can be approximated as a
Markov vector if the random excitation is approximated
as a zero mean physical white noise W(t) having the
autocorrelation function

R (A7) = E[W(t)W(t + A1)] = 2Dé(A1) (14)

where 2D is the spectral density intensity and J( ) is the
Dirac delta function. This modelling is justified as long
as the relevant Wong-Zakai'® correction term is
introduced. The non-linear functions ¢, contain
acceleration terms coupled with  displacement
coordinates such as Y7 Y,. These terms are removed from
equations (12) by successive elimination by using
MACSYMA software. Equations (12) take the new form

Yi+2raYi+rhYi=fWir)+egdY.Y) (15)

where linear viscous damping terms have neen introduced
to account for energy dissipation, and

wf = (ki Mk, im,), ra=w; w;,

fi=nM, e=g3,l

Wit)=

Toim Flt:w;)
A

Introducing the transformation into the Markov state
vector X
N YUY Y Y Yl ={X, X, .. Xej  (16)

equations (15) may be written in the standard form of
Stratonovich differential equations

[
dX;=F(X.1)dt+ ¥ G, (X,7)dB(r) an
in

where the white noise W(r} has been replaced by the
formal derivative of the Brownian motion process B(z).
ie.,

Wi(r)=o0 dB(r)/dz, 62=2D

Alternatively, equations (17) may in turm be
transformed into the Ito type equation

6 6 2G.
dx.=[r,(x.r)+1 TS G,,lx.tlw]dt
2i-lj-l X,
6
+ Y GyX,1)dBr) (18)

i=t

where the double summation expression is called the
Wong-Zakai correction term'®.
The system stochastic Ito equations are

dX,=X,dr, dX,;=X,dz, dX,=X,dr

£x . 5
dxz=—{2§lrl,Xz+rf3X,+~——w (=250 —riX
My

X (Lyy Xy + L2 X3+ Liy Xs)
—(25r23X 4+ 133X )

XLy 2 X+ L2 X34+ L3, Xsh—(+203X6 + X)
X (Ly 13X+ Ly Xy + Ly X )+ My, Xi

+M X3+ M 33X

+M1,zXzX‘+Ml,,X2X¢,+M12,X,X,,],Ldr

e ,
+{fl—w_[f|u‘|nxl +Li Xs+Li Xe
AREY

+ Ly Ky + Ly X+ Ly 3 X )
FS3tLis X+ Lyaa X5+ Ly X))
g?a?
MM,

+follyy 3 X + Lo X3+ Ly5,.Xs)
+{f3lay3 X +Ly3 X

+Ly3s XLy 2 X + L2 X s+ Ligs X
ex?
M (M

+ 1Ly, X, + Ly Xy
+ L322 X )+ f3{L313X + L33 X5
+L333X )]+ LyasX,

+ [Atly Xy + Loy X g+ Lys X0

+ [Aillyy Xy + Ly X3+ Lyy X

+le,x,+l_‘,3x5)}d3

5 £X .
dX,= —%251'231\'4*’33/\’3*'—“—‘[f—-?:x’qu-’Ta«‘1'

Y22

*{Lyy Xy +Ly2aXy+ LX)

— (25 X+ rhaXy)

XLy 2X ) +L22s X5+ Loy Xs)

-3 X, +X;5)

% (Ly13X ) +La23X s+ Ly3sXs)

F My X3+ Moo X5+ Ma3u X3

+M211sz4+Mznxzxo+Mzuxaxn]i' de

e
+{fz"M—‘[fl(LGxn +L3 X3+ Ly Xs)
22

+hollay 3 X+ Lygy Xa+Ly5,X5)
+f3(Lay 35X + Ly X

R
MMy,

+L;33X)) +
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x ALy X+ Lyg Xy + Ly Xy)
F Loy Xy + Ly X+ Ly 52 X)
Ly 13Xy + Ly 23Xy + Ly 53X5)]

22

M2 My,

XLy Xy + Ly X3+ Ly Xs)+

% [SULy Xy + Lyg Xy + Ly3 Xs)
+ )2l 2 X+ Ly X3+ Lygp Xs)
+ 3L 3 X+ Ly 3 X3+ L333X )]

x(Lz,,X‘+L23X3+L:33X,)} dB

(.. £ ; ,
dX,= —%2,3.‘((,+.\’5 +T[1—2,,r‘,x2~r;3x,)
! My,

XLy Xy + Lag X3+ Lyy Xs)
=2 X e+ riXy)

X (LygaXy+ Ly X3+ L33 Xs)
—(253X + X)Ly, 35X,

x L3y3X 3+ LassXs)

My XMy X3+ MyysXE

FM XX F M XX MK X ] % dr

e .
+.’J——‘w3 (NtLyy X+ Lya X5+ L3y, X
My,

+ oLy Xy + L3y X3+ L3, X 5)
+/3lL313 X + Lyz3X 3+ L3353 X )]
eyt
L
My My,
+ oLy 2 X+ Ly X+ Ly 3 X )
+f5lli s X+ LiasX s+ Li53X 0]

xALy, X, *‘LszlcY3+L331.\’5)

(N Lo X+ Laa X3+ Lyy Xs)

(Sl X+ L X3+ L5, X o)

£l
TMM
Ly X 4 Lyaa Xy + Ly X )
3Ly 3 Xy + Lygs Xy + L3y X )]
X 1Lygs X1+ L3z X s+ Lysy X)) dB (19)

The evolution of the response probability density
function is described by the Fokker-Planck equation

X8
ét ——Z

¢
x [aiX.1)p(X. 1]

¢ 2

6 L3
- . 9
+3 ¥ XX [bAX. 01X, )] 120)

i1 =1

where p(X.t) is the response joint probability density
function, and a(X. 1) and b;(X, t) are the first and second

incremental moments evaluated as (ollows

agX. )= lim AL‘E[.Y,U +An-XNin)

ar-04t

N P .
b.,(x.r)=5|‘1r_no‘;E[,.\,tre-Ar)—,\,m

x X ft+Ar) =X 0] 2

The coefficients g, and b, are evaluated for the present
system with the aid of MACSYMA program [t » not
possible to solve the resulting Fokker Planck equation
even for the stationary case. Instead. one may generate 4
general first order differential equation describing the
evolution of response moments of any order. Thi
equation is obtained by multipiving both sides of the
system Fokker Planck equation by the scalar function
d(X)

O(X)= Xh XXy Y xhxl 122
and integrating by parts over the entre state space — ». <
X < x. The following boundary condiuons are used

pPX— - x)=pX— 7)=0 1231

Due to space limitation the system moment equation
will not be listed in this paper. The reader may refer o
Ref. 17 for more details. However. the general form of the
resulting differential equation is

m‘\-=F\(m,.m:.....m\.m'\"l’ h
where N=Y % k..

In deriving the system moment differential equation the
following notation is adopted

.,
my s, "*=J |p(X.r)®(X)d.\’ld.\’:...d‘\',‘ 251
e

It is found that the differential equation of order \
contains moment terms of order N and N < 1. The source
of this infinite hierarchy is the system nonliinear functions
¥, in equations (12). If these nonlinear functions are
dropped the system becomes linear and the response
moment equations are consistent. In the present study the
following three cases will be examined:

(i) Linear response of constant coeflicients structure.

(ii) Linear response of the structure with random
stiffness.

(iii) Response of the structure with autoparametric
interaction involving the internal combmation
internal resonance = w, +w),.

V1. STRUCTURE WITH CONSTANT
PARAMETERS

The equations of motion for this case are obtained from
equations (11} by excluding the nonlinear functions ..
The resulting equations of motion are

1 00 v;] T 007 ¥
o1 ol w2, 0 of lny
00 1 Y;’ 0 2, I}",
{’zla 6 o Yl’ f|l
+]0 ;0 Y, =W fy
0 0 1 y,[ f,l (26)
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For this linear case the response moment differential
equations are consistent. The mean squares of the
stationary response is obtained in the closed form

E[Y{]=Dr{ (2irdy). E[Y¥]=Dr7 2514
E[Yi]=Dr} (20,rdy E[Y3)=D13 (24ry).
E[¥}]=Dr}.42;). E[Y$]=Ds3 (2y)

Before presenting the linear response graphically. it
would be useful to recall that the generalized coordinates
4, were nondimensionalized with respect to the root-mean
square of the main mass response when the coupled
system was locked under forced excitation. The value of
q3 can be estimated from the single degree of freedom
equation of motion

(m, +my+my)g;+Cyds+kyqy=F(1) (28)

which has the stationary response
E(45°])=E[35*]=D 23, 129

and therefore o
4y=y D 27, 1300

The excitation parameter level D 2], 1s chosen so that
4y 1s chosen so that g3 1s umity and as a result any
deviation from unity gives a measure of the dynamic
interaction (linear or nonlinear} with other modes. For the
analysis hereafter the excitation level will be chosen such
that

2; (KN

-3 =

In this case the mean square response 1271 1s reduced to
the simple form

Byil=2 it )=zl

2371 2373
Evil=2 L pyp=n

3723 +3723
E[Y3]=E[Y¥]=13 132)

The linear response for both normalized and generalized
coordinates is determined for various damping ratios.
Figs 3 and 4 show the mean square responses as a
function of the frequency ratio r for two sets of damping
ratios. It is seen that both the first and second normal
mode mean square responses decrease faster than the

T T T T T T

O \

L2 R PR

i

Fig. 3. Mean square response of normal modes for
2 =0, =0005, {y=001
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:
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Fig. 6. Mean square response of generalized coordinates
Jor [ =.,=001..y=00]

third mode as the frequency rauo increases. In terms of
generalized coordinates. Figs 5 and 6 shows that the mean
square displacement increases while the two beam
displacements decrease with the frequency ratio. The two
sets of figures show the well known control damping effect
on the mean square responses.
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YIL SIKUCIUKE WITH RANDOM SIHIFFNESS

The equations of motion of this case are obtained by
including a random component to each stiffness in the
original linear equations of motion.

The equations of motion take the

myy My My [‘lnl

myy my; 0 142
iy

m; 0 myy
ky+Sp00 0 0 [q, [0
~|0 ky+S.00 0O 42 =140
[\] 0 ky+ 8,500 lq, lFm
133)

Introducing the same dimensionless parameters listed
in Sections If and [II. the equations of motion in terms of
the normal coordinates after introducing linear damping
are:

VT 20y =y s WT sy WD)
sy, =W

viw2raaby +rigys = [ Wi = s W
Wy, =W

Vim 2 =iy Win -, Wain
~spuWyn]y, =W 34

where

and W,(r) are zero mean white noise processes with
spectral densities 2D,. Equations {34) constitute a set of
coupled differential equations. The response mean
squares are obtained by solving the stationary moment
equations. The analytical solution for the stationary
response 1S

E[ YT‘] =Df3 :2;1’1‘3 =Dysi, =Dyt = Disiy,.

E[Y¥]=r1,E( Y]]

E[ Y%] =D,’§ :::’g;‘bl»"ix ~Dys3p =Dy

E[Y?]=ri;E[ Y]]

E[Y§]=D/'§ 1205 D33, = Dysi; = Dysiy).

E[Y{]=E[YY] 135)

This solution indicates that the system may be unstable

depending on the values of D,. The fact that the mean
square must always be positive provides the stability
criteria for mean squares given by (35). These criteria are

obtained by keeping the denominators of 135) always
positive, i.e..

213> 4Dys5, + Dasia + Dysiy)

2,r33> (Dys3, +Dasip + Dysiy)
203> (D)5}, + Dysiy + Dysiy) 136}
The stability boundaries represented by conditions (36)
are shown in Fig. 7 as a function of the internal resonance
frequency ratio r. For simplicity the excitation levels
D, 2;, of the random stiffness perturbations are assumed

to be equal. Samples of the response means squares as
function of the excitation level D2 are shown in Figs 8

. ! - T T -
v !
v |
5 [ |
r v -
7 [
v,
v
h -
’ F tatte i
" . "
* P NN
Fig. 7. Meun square stability boundury of the siructure
with random stiffness. for =0 (1]
N T T T T 1
s
i SR SUREEE
Iy s Y

) A A 1 I i i J

bl W01 N L. B .

Fig. 8. Mean square response of normal modes wirh
random stiffness for r=1.0.  =0.0]

and 9 in terms of normal and generalized coordinates.
respectively. It is observed that the response of tip mass of
the vertical cantilever is the main source of instability

VIIl. ALTOPARAMETRIC INTERACTION

In this case the influence of nonlinear modal couphng on
the system response will be examined by inciuding the
functions in the analysis. These functions are only
significant if the structure 1s tuned internally such that the
normal mode frequencies have a linear relatonship For
the present system it is found that the following three
internal resonance conditions can take place'*

Ny =+

4=

wy=2, and y=2w., 137

The random response of the system will be exmined
under the first internal resonance condiion. s
mentioned in Section [11 the response moment equations
involve infinite coupling which must be closed in order to
solve for the response statistics. It 1s known that the
response of any nonlinear system to a random Gaussian
excitation will be non-Gaussian. The deviation of the
response from normality depends on the degree of the
system nonlinearity. Gencrally. closure schemes are
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classified into Gaussian and non-Gaussian'®. The
Gaussian schemes are useful for dynamic systems with
weak nonlinearity. However, in certain situations the
application of Gaussian closures may lead to stochastic
stability boundaries which are different from those
derived by other techniques such as Stratonovich
stochastic  averaging or non-Gaussian closure
approaches. This type of contradiction has been reported
for nonlinear systems under parametric random
excitations'®. For two degree-of-freedom systems the
Gaussian closure scheme yields nonstationary response
while non-Gaussian closure gives strictly stationary
response. However, the main response characteristics are
found identical as predicted by both methods.

This Section examines the nonlinear response as
obtained by using a Gaussian closure scheme which is
based on the properties of the cumulants. For the present
system 27 equations for the first and second order
moments will be generated. The moment equations are
closed by setting all third order cumulants to zero, i.e..

XX X, = ELX X X, § ELXJELX %]
+2E[X)E[X JE[X,]=0 (38)

where the number over summation sign refers to the
number of terms generated in the form of the indicated
expression without allowing permutation of indices.
Relation (38) is used to obtain expressions for the third
order moments in terms of first and second order
moments.

The solution of the closed 27 coupled moment
equations is obtained numerically by using the IMSL
DVERK Subroutine (Runge-Kutta-Verner fifth and sixth
numerical integration method). Depending on the value
of internal detuning parameter r the system response may
be reduced to the same linear response of section VI or
may become quasi-stationary which deviates significantly
from the linear solution. The response of autoparametric
interaction is found to take place in regions of internal
resonance ratio slightly deviated from the exact tuning
r=]. The deviation may be attributed to the contribution
of nonlinearities incurred during the Gaussian closure
procedure. Surprisingly, exact internal resonance yields

linear response characteristics which are displayed in Fig.
10. It is seen that the response fluctuates between two
limits during the transient period, then converges to a
stationary values which corresponds exactly to the linear
solution of Section VI. The effect of different initial
conditions is examined and it is found that regardless of
the initial conditions the solution reaches the same steady
state value. For internal resonance ratio r=1.175, Fig. 11
shows another set of time history responses. In this case
the response mean squares do not achieve a stationary
state. During the transient period the frequency of the
third mode is approximately 1.17 times the sum of the first
two mode [requencies. The quasi-stationary behaviour.
although present for all three modes. is most prominent
for the second mode.

To further illustrate the departure of the nonlinear
response from the linear one, Figs 12-15 display the
dependence of the normalized mean squares on the
internal resonance for various system parameters. The
mean squares are normalized by the corresponding linear
solution. The subscript G/L refers to the ratio of the
nonlinear Gaussian solution to the linear response. In the
regions near critical internal resonance the upper and
lower envelopes of the quasi-stationary response are
plotted. A general trend is observed to exist in all figures.
There is a sharp increase in the displacement mean square
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Fig. 10. Time history response of normal coordinates for
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Fig. 11. Time history response of normal coordinates
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of the second mode associated with a corresponding
decrease in the mean square of the third normal mode and
very slight drop in the first mode. This feature is similar to
a great extent to the deterministic nonlinear absorbing
effect reported by Ibrahim and Woodall'®. Figs 12and 13
show the effect of damping ratios of the system response.
It is seen that any increase in damping results in
narrowing the region of autoparametric interaction. The
nonlinear coupling parameter ¢ has a direct influence on
the degree of the response deviation from the linear
solution as shown in Figs 12-15. As ¢ increases from 0.025
to 0.05 the region of autoparametric interaction becomes
more wider.

IX. CONCLUSIONS

The linear and nonlinear modal interactions of a three-
degree-of-freedom  structure subjected to random
excitation is examined. For the linear modelling the
response is determined for two cases of structure
parameters. The first case is when the parameters are
constant coefficients. The mean square response of this
case is obtained in terms of the excitation spectral density
and the internal detuning parameter. The second case
involves random parametric excitations in the stiffness
matrix. These excitations result in modal parametric
coupling of the normal coordinates. The mean square
responses are governed by the spectral densities of
parametric excitations which also result in the conditions
of mean square stability. The results of the first case are
used as a reference to measure the effects of nonlinear
inertia coupling of normal modes on the mean square
response of the system in the neighbourhood of
combination internal resonance. It is found that the
critical internal resonance occurs at a vafue ciose to r=
1.175 which is deviated from the exact value r=1. The
nonlinear modal interaction results in an increase of the
second normal mode mean square response and in an
associated decrease of the first and third normal modes.
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Stochastic Response of Nonlinear Structures
with Parameter Random Fluctuations

R. A. Ibrahim* and H. Heot
Texas Tech University, Lubbock, Texas

The random resp of a system is d when its p are experiencing
random (uctustions with time. The treatment is based on the recent » in dhe math d theory of
stochastic differential equations. These include the Ito stochastic calculus and the Fokker-Planck equation
approach (o derive & general differential eq that describes the of the | of the

response coordinates. The differential equation is found to constitute an infinite coupled set of differential
mumdﬂdmmdmmmmsymnmnsdammeme

hborkood of i condition and for various random intensities of the system parameters. It is
lmummwmumwwu-mmmmum
fuctustion intensity. The effect of the random damping Auctustion on the system response is found 10 be very

small compared to the stiffivess fuctustion effect.

I. Introduction
HE dynamic bebavior of hghlweag,ht structures is of main
concern to ngin d in the design
and reliability of pace str These str are

usually made up of composite materials that are nonhomoge-
ncous and exhibit fluctuations in their dynamic properties.
The fluctuations of these propem& are random in nature and

dormant. As the excitation amplitude reaches a certain critical
level, the other modes become unstable, and the onginally
excited mode reaches an upper bound. This mode is said 10 be
saturated, and the energy is then transferred to other modes.
Thns type of modal interaction is referred to in the literature

ametric i ion,' since ome mode acts as a
panmemc exauuon to other modes. Barr and Donc’ con-
test and lied a

thus result in rand and resp Dx

on the apalytical mod: of such str . the interaction
between aerodymmlc. mcnu. and elastic forces may yvc nse
0 a number of { For
ﬂuttcrcanocmrdmwahneumwncuonotthmthm
forces. Classical flutter may also involve the coupling of two
or more degrees of freedom. H , the linear mathematical
modeling fails to predict a number of observed dynamic
characteristics such as amplitude jump, limit cycles, paramet-
fic inswability, internal muluple i and
saturation phenomena. These complex characteristics owe their
origin to the inherent nonlinearity of the structure.

The amplitude jump, limit cycles, and parametric instability
are common feamm of nonlinear single- and multi-degree-
of-freed ic instability' takes place when
the external excnanon appears as a coefficient in the homoge-
neous part of the eqmnon of motion. It occurs when the
excitation [requency is !wwe the natural frequency of the
system. Internal resonance? and saturation phenomena’ may
occur only in nonlinear dynamic systems with more than one
degree of freedom. Internal resonance implies the existence of
a linear relationship between the normal mode [requencies of
the structure and results in a nonlinear interaction between
lhenomalmodesinltomofeuet;ye:chmge.Under
external excitation, the mode that is directly excited exhibits,
in the beginning, the same features of the response of a linear
single-degree-of-freedom system, and all other modes remain
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excitation at ome or more points to find out the condmons
under which parametric and autoparametric instabilities could
occur. The autoparametric resonance was found to take place
when the directly excited mode re?uency is twice the indi-
rectly excited mode. Barr and Done’ observed several combi-
nations of normal mode interaction. For exampie, when the
exciting mode was wing bending, the excited mode was found
10 be one of the following: 1) wing store pylon bending, 2)
wing store pylon twisting, 3) engine pod mounting structure
bending, or 4) engine mounting structure Msun&

In siructural dynamics, the i y is rep d n
three different forms:'*® elastic, inertia, and damping nonlin-
earmes Bnuc _nonlinearity stems from nonlinear strain-dis-

which are i . Inertia nonlineanty
is derived. in 2 Lagrangian formuhuon‘ from kinetic energy
The equations of motion of a discrete mass dynamic system,
with holonomic scleronomic constraints, in terms of the gener-
alized coordinates g,, are usually written in the form’

" L] » ay
Tm,q+ L Lliidag+3=0.
P T e <" 3
=12, .n

where ¥ is potential energy, O, represents all nonconservative
forces, and (j¢,i] is the Christoffel symbol of the first kind
and is given by the expression

im am ’
1. m, w O™y
(et » 3 T e - |

The metric tensor m, and the Christoffel symbol are gener-
nllyhmcnonsoltheq,.ndlorm:bwuheethbnum
configuration they can be expanded in a Taylor series about
that stase. Thus, from inertia sources, quadratic, cubic, and
higher-power nonlinearities can arise.
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Other types of nonlinearities, such as distributed and con-
centrated nonhnunucs. are encc d in lastic flutter
problems.* Distributed nonlinearity is induced by elastic de-
formations in nveled d and bolted i as well
as the str b Concentrated non-
linearity acts locally in control mechanisms or in the con-
necting parts between wing and external stores. This nonlin-
earity is caused by backlash in the linkage clements of the
control system, dry friction in control cable and push rod
ducts, kinematic limitation of the | surface deflecti

Barr and Ashworth,!* and Haddow et al.*® Their swudies
showed that the system exhibits a number of nonlinear re-
sponse phenomena under conditions of internal resonance,
high excitation level, and low damping ratios. The authors of
the present paper have recently determined the random re-
sponse of this system to random support motion when its
parameters are time-independent.?! In fact, as the structure
oscillates, the damping and stiffness coefficients may expen-
ence random time vanations. The random vaniations of the

and application of spring tab systems provided for relieving
pilot operation. Breitbach’ determined the flutter boundaries
for three different configurations distinguished by different
types of nonlinearities in the rudder and aileron control
system of a sailplane. It was shown that the influence of
hysteretic damping results in a considerable stabilizing effect
and an increase in the flutter speed. Similar effects of nonlin-
carities due to friction and backlash were reported in Ref. 10.
Peloubet et al.'' Reed et al.'? and Desmarais and Reed"’
examined the effect of control system nonlinearities, such as
actuator force or deflection limits, on the performance of an
active Autter suppression system. It was shown'’ that a non-
linear system that is stable with respect to small disturb
may be unstable with respect to large ones. Another important
feature was that a store mounted on a pylon with low pitch
stiffness can provide substantial increase in flutter speed and
reduce the dependency of flutter on the mass and inertia of
stores relative to that of still-mounted stores.
It is clear that, in mathematical modeling, the ]

str | parameters md the random support excitation will
be d G dent wide-band processes. The
Fokker-Planck equation approach will be used to generate a
general first-order differential equation for the statisucal mo-
ments of the response coordinates. In view of the system
nonlinearity, the response processes will be non-Gaussian-dis-
tributed, and the moment equations will form an infinite

led set of i which will be closed via two
\Mependem closure schemes referred to as Gaussian and
non-G b 16 These closure schemes are

based on the semi-invariant properties of the response
processes. The Gaussian closure scheme is only valid if the
system is linear with time-invariant coefficients and is sub-
)ecwd to Gaussian excitation. The application of Gaussian

to nonli is analogous to the linearization
solutions of delenmmsuc nonlincar differential equauons. The
non-Gaussian closure scheme is more accurate since it takes
into account the effect of the system nonlinearity on the
response probability density function. More details of closure

should consider various types of nonhneanues in order to

different problems d in str | &

are the random of dynamic systems to random
parametric exci ¢ and the random response of structural
systems whose random variables described in a

h may be found in a recent research monograph'® by
the first author The results will be compared with the re-
al of the same system when its coeffi-

ctents are constants.

II. Theoretical Analysis

Equations of Motion and Response Markor Vector
I_Fx;mlshowsasdmnwcdumolmmdyumlmodel
of a nonli ystem, w| P a
wing with external store. It consists of two coupled beams
wnhnpm-ues m and m,. ‘n:epmem study will examine
the the first two normal
modaundcrnndomsupponmouon §0(t) when the dynamic
properties of the system experience random fluctuations. The
mathematical modeling of the system was derived in Ref. 22.
lnlctmofthenondmuondnormﬂcoordmnm Y, and
Y,, the sy of are

1 o]y v
o 1\

+[zr.ll +Ea(n)] 0 ]{ Y.'}

0 27 [1+ ()]
1+ 6u(r) 0 h { 'l
*[ 0 rll+eu(v>l]{ } ATy
MAR L)
("[ Yz ‘{w,(v.v'.v")> o

where (Y, 1) = {3, ,)/4], and ¢ is the response root-
mn-sqmolthcsyuemwbeuxhemuulbumnloded
and the horizontal beam bebaves as a single degree of freedom
with end mass m, + m,.
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The normal coordinates y arc related to the generalized
coordinates ¢ through the transformation

{a} ~[R}{»} (2)

where [ R} is the system modal matrix that is defined in Ref.
21. The small parameter ¢ = g0 /¢, is the nonlinear coupling
parameter, 7 = w,/w, is the frequency ratio where w, and w,
are the normal mode frequencies (in the present paper it 1s
considered that w, < w,). A prime denotes differenuation with
respect to the nondimensional time parameter r = w, 1.

The nonlinear functions ¢ (Y. Y LY") are given by the
expressions

W(Y. YY) =a WV +a MY +a, VoY)

+a, Yo Yy + ag VY2 + a,Y ¥y + a, V72

(V.Y ¥ )= b T+ b + G117
+ bV Vy + by YT+ B Y Y] + by 1y?

The coefficients a, and b, dq;mdonthesystempamneten
and are defined in Ref. 22. These f
nonlinearities of the inertia type. They include wlopln.memc
coupling terms such as Y,Y;* in which the acceleration ¥;” of
the second mode acts as a parametric excitation 0 the first
modeTbeﬁmexpmuononvhen;hl- sides of Eqs. (1)

the 8! part of the excitation, while
themondexpmnonnihepnnmncmof!hgexuu-
tion that couples the two moda pmmctncaﬂy e,,(r) and

€,,(r) P the ions in the damping and
lerms. pectively. These functi and the suppon
| d to be G wide-band random

pmmmmmmspecmldmmdm
processes are assumed to cover a frequency band that includes
the first two normal mode frequencies and to be well below
any other higher normal mode frequency. In the limiting case,
as the correlation time of §,(t) becomes very small compared
m(hmychumucpenodofthesysm the response

ach a M In order 10 represent
Egs. (1) as a Markov vector, the acceleration terms ¥, which
appear in the nonlinear terms y,(¥.¥’.¥*), must be re-
moved by successive elimination. This process has been per-
formed by using the MACSYMA software. Having eliminated
Y, Egs. (1) can be written in the Stratonovich form'®

4
X =f(X, 1)+ L GAX,DE(7), j=1...4 (3)
1=1
through the coordinate transformation

(Y. R = (X0 5 X} 4

ElY(]

!
1.0 ‘
i

il

~25.3~ ;
o o
. i
ElY}) i
0.4 0
|
0.3 .
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vl ~ o~

"" w»,
°w@9¢@ T

Fig. 2 H*Mynmdwwmmmu
to Gaussian closure solution.
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t0 non-Genesian closure
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Alternatively, the system equations of motion can be wntten
in terms of the Ito-type equation

ac,,
[/.(x N+l ): £ 6, (x.n) 225 }dv

fre i’
4

+ ¥ G,(X,r)dB(r) (5
J=1

where the double summation expression is referred to the Ito
(or the Wong-Zakai) correction term,'® which is a result of
replacing the physical wide-band random process §,(7) by the
white noise W,(7). In Eq. (5) the white-noise processes W, (r)




have been replaced by the formal derivative of the Brownian
motion B (1), i.e.,

W(r)=dB(r)/dr (6)
The statistical properties of B,(r) are
{ E[dB(7)] =0 (7a)
b E[dBX(r)] =2D,dr (o)
E[dB(7)dB(r)] =0 for:w, (Te)
f where 2D, is the spectral density of the Brownian motion
process B,(r). The equations of motion can now be written in
. terms of the Markov vector coordinates X, as
dX, = X,dr
dX, = X,dr

dx:'{‘xl _2;lx)_alxlz—
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(ae +rias) X, Xy — rla; X3 ~

+ug Xy Xy + ayg X +‘QI§|Z( Xy + 20,5 X, + 2a, X, Xy + al X Xy +
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It is found that the system Fokker-Planck equation cannot
be solved for the response probability density 1p a closed
form. However, llispouibkwgenenuagenuddxﬂ'mud

ion for the resp Joint moments of any order V by
mulnplym‘ both sides of the system Fokker-Planck equauon
by the scaler function

O = X X{ X} X{ (11}

where 1+, +k+ /=N, and integrating by parts over the

entire space — o < X < 0. The following notation is adopted
to denote the various response moments:

mke= f]f/nX£x:X.p< X.r)dX, . dX,dX,dX, (12)
=90

220X, Xy ~203ra X, X, - 2y Xy X, ~ 2yr0, X, X, + ay X

28,8, X, X, Xy + al X. X,y)

+4D, $3ri[a, X Xy + a; Xy Xo + asby XXy + (ayby + asby) X, Xa X, +a20, X3 X, ]} dr - X, dB, (1)

- (@ X Xy + . Xy X ) dBy (1) = 2,( Xy + au X, X + ag X, X,) dB, (1) = 28,r(ag X, X, + @+ X: X, ) B, (7)
—( A+ ALK+ A Ky + AKX+ AKX Xy + A XT) dBy(7)

AX = { =P X = 2507 Xy~ b X = (b + r2) X Xy = r2ba X] 20,0, X, X, — 2 X, X, - 2B X X, -

+0y X5 + b Xy Xy + bio Xy + 4D, [ b X, Xy + B, X, Xy +a by X1 Xy + (auly + byag) X, Xy X, + aoby X1 X, ]

+4D, $3r3( Xy + 20X, Xy + 2, X, Xy + BIXEX, + 2bybo X, X, X + b3 XEX,) ) d7 = 25,( by X, X + B X, X,) dB (1)

—r{( Xy + by Xy Xy + by X}) By (7) =200 ( Xy + by X, X, + 5, X, X, )dB, ()

2, rb X, X,

(8)
—{By+ By X, + ByX; + B, X} + B X, Xy + B X} ) d By(¢)

where the underlined expressions are the Wong-Zakai correc-

tion terms.
Dynamic Moment Equations

% The joint probability density function p(X.7) of the re-
sponse coordinates can be detenmned by applying the
Fokker-Planck equation

4
Fp(X.n)= - £ Frla(X.np(x.n)]

4
} +3L 5 m[b.,(x p(x.7)] )

i1 el
where a,(X. ) and b, (X, v) are the first and second incre-

memalmuof&Markovprowu X(1). These are
defined as follows:

a,(X.v)-'.I'iEo]l;E[X,(vd‘lv)—X,(f)] (10a)

W |
b (0.0 = pm e

x{[X(r+80) - X (][ X,(7+8r) - x(r)]}
(100)

provided that all imits exist and X(r) = X.
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The Iting differential equation of the resp Joint M is

L AW NSL S L R W +k[ ~m et S D, — ) m, o maam s o

‘(‘c *’zas)"':.l‘,ox.hL("z‘v"':.,oz.a—u +2;ln4({lbq - 1)"':*1.,.:./*(2"‘5(‘2’00 - z)mx.x.,.A-x./.u

+2§\“0(“ID¢| - l)"’..,u.n.t* fz’”?“z'oq S, ey PO, g o BeM, eyt B10M, e 2]

*([ "2"'..,.1,1\.(4 +($rD, ~ 2m, o bmy

e et R T AR o . R

*'f\bb(fxpc. "2)”'..1‘,,‘.|,f—\ + Zfszs(fz’Dc, - l)"':«l.,‘a,(*ﬁk(flpc. ‘2)"'..,‘1.Ao:_z—1
"’R‘z’h(fz’@. - l)"‘.,,ol,k.( +hgm, et Mmoot bm"'-.,.nan] +k(k- 1){ Dy Alm, sk-2c

+2DgAiAam, oy o1 +2Dg A Asm, L o et [D,“ -

Dy(24,4, *Ag)l"'nl.,.bz ¢

+ 206 (AAs+ Ay m oot Do( S 24040 m 0 +4D M, /} *k([ZDY“lBXML,‘A-I o

+2Dp( A By + A3B)I M,y ko + 2D (B A M,y ey +2D6( 4B+ AB + AdBY)m

+2D( A By + A B+ A1 By - B My e v 2Dy (ABy + A B+ ABY M, oy o)

+e(¢=1){2DoBim, o+ 2DBBim, .\, oo

+21DyB\Bym, .\ o2t Do(2B\ B +Bi)m L

+2Dy( BBy + B By)m oy vk * [ D, r* + Dy( B} + 7-3136)] m k1t ‘De,fzz’zmu,,km}

Gamssian Closwre Sobution
It is seen that any moment equation of order N includes

. terms of order N + 1 on the right-hand side of Eq. (13) which,

in this case, constitutes an infinite coupled set of moment
equations. In order to close this infinite hierarchy, two differ-
ent closure schemes will be applied. These schemes are based
on the properties of the joint cumulant (or semi-i iants). It

(13)

IMSL (L ional Math ical and Statistical Library)
DVERK subroutine (Runge-Kutta-Verner fifth- and sixth.
order oumerical integration method). The results of this solu-
tion will be presented in Sec. fII.

Nos-Goussian Closre Sob

should be noticed that the resp coordinates are not

approach
applied for the present system by setting the third-order joint
cumulaat to zero, ie.,

M{XXL] = E[xXX]
—}’:qx,ls[x,x.] +2E(X)E[X) E[ X} =0 (14)

where the oumber over the summation sign refen to the
wumber of terms generated by the indicated expression without
allowing permutation of indices. For example,

Z’lElX.lE[X,X.l =E(X]E(xx]+E[x] E(xX%]
+E{ ) E[x x] (19)

m&.—-domexhuumnledlollcbdmt

These equations will be integrated oumerically by using the

The Gaussian c} ' is analogous 10 the lineanzed
wlnnono(mhnuxmchnmapmblemlnmoflhe
inherent nonlinearity of the system (as well as the random
time coefficients), the response processes will be non-Gaussian
and, in this case, all higher-order cumulants of order greater
mnzwmno«vmnepmbmmym‘yorm-oww
ian p can be exp d i terms of the Gram-Charlier
expansion or Edgeworth asymptotic series. It has been shown
(in Ref. 23) that rapid coovergence in the Edgeworth expan-
sion can be achicved by retaining the first few terms in the
series. In this paper the non-Gaussian closure solution will be
obtained by setting the fifth-order joint cumulant to zero, 1.¢.,

AP X XX X.] =E[ XX XXX,
-}!_‘,E[x,)b'[,\;x,x,x,]
+1E5l&15lx.lflx.xzx-l
-sﬁs[x,;a[x,] E{ X, )E[ X, X,]
+2E£[x,]£[x,x.] E[ X, X,]

- EE[X.X,I E[ X, X.X.]

+ME(X|E( X ] E[XJE( X1 E[ Xa] (16)
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This procedure requires that 69 differential equations be gen-
erated from Eq. (13). These equations consist of 4 equations
for first-order moments, 10 equations for second-order mo-
ments, 20 equations for third-order moments, and 35 equa-
tions for fourth-order moments. These equations will be solved
by numerical integration by using the IMSL DVERK sub-
routme The results of this solution, to;ethet with the Gauss-
ian lution, will be di d in Sec. I

1. Statistics of the System Response
The statistics of the system response are determined for
three different cases of system parameter uncertainties. These
are 1) damping random varistion, 2) stiffness random varia-
tion, and 3) damping and stiffness variations. The results of
the numerical integration are presented and discussed in the
following sections.
Response of the Systess with Ramdom Damping
The time-history resp of the displacement mean

and steady-state responses for exact internal tuming ratio
r=0.5, damping ratios {; = {, = 0.02, mass ratio m, /m, = 0.2,
exdutionspectnldemtyzl\, = 0.08, and damping variation
density D, = D, = 0.10,. Both responses show that the tran-
mtrupmxkvdummalhxudy-suukvdltu
seen that after a respomse period of r=1000, the mean
squares fluctuate between two limits for the Gaussian closure
solution while they are strictly stationary for the non-Gauss-
is due 10 the fact that the non-Gaussian closure more ade-
quately models the systemn nonlinearity. The stationarity of
the response of coupled nonlinear sysiems was verified by
Schmidt,”* who used the stochastic averaging method. The
influence of the initial conditions on the time-history response
is found to bave no effect on the steady-state respounse for
both solutions; however, the effect exists only during the
transient period.

The numerici. integration has been repeated for various
values of internal detuning parameter r in the neighborhood
of the exact internal resosance r = 0.5. The results are shown
mF\p.4MS£anunndm-Gmdme

mmmumbymm(loradmode).
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which represent the upper and lower limits of the quasi-sta-
tionary response as reflected in the steady-state time-history
response shown in Fig. 2. The non-Gaussian solution, oo the
other hand, is shown by ope curve for each mode since the
respomenchwvuasuuonrymponu lesseent.halthe
mean square of the first ]l mode ap the r
onhenn;lcdegreeoﬂmedomuthemmaldctumnglswell
removed from the exact internal resonance r = 0.5. The damp-
ing random variation has a remarkabie effect on the Gaussian
closunsoluuon.mdtheeﬂ'ectuleupmmneedmmc
oon-Gausai h In the non-Gaussian solution,
the damping variation results in a slight decrease in the
mean-square response of the first mode and a

increase in the second mode mean-square response for r < 0.5.
For r > 0.5 the effect is reversed. It is found that the damping
fluctuation does oot have a uniform effect on the response in
the case of Gaussian closure solution; however, the region of
the ic i jon b narrower.

L

Mdﬁm-ﬂl‘-m
Figures 6 and 7 provide a b the mean-

sqmmpoueoflhesymnobmdby(}amnmd

non-Gaussian closure solutions, respectively. The response of
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By v’ 9, according to G and non-G closure solutions.
' * respectively. Based on the results of the previous two cases. 1t
201 jo.04 is clear that the system response is mainly dominated by the
stiffness random varniation.
1.8+ Jo0s IV. Conclusions

1.0+ J&ﬂ
o8¢ 1000
[ - 0
0.48 0.8 Toss

Fig. 8 Mwwdwmmwm
closure
sy:--ur-b-d-niuudn-. n,,-p.,-mn., m.-

E(vy] €etvil
20/ 40.04
1.8 0.03
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14 LV
10+ \//f‘, Jo.02
. €
181 ! 4 Jo.01
S
J .48 [T ass .0
:“u 9 M-r-m rqu-o of normal modes mﬁu t0 nom-
systom; —, system with r-ln- dasnping sad sﬂllln = Dy
.10y, ID.-M

the systemn with stiffness random fluctuation is shown by
dotted curves, while solid curves belong to the response of the
deterministic system. [t is seen that, for both solutions, a small
random fluctuation in the system stiffness ( D,, = D,, = 0.1Dy)

The inft of the damping and stiff random vana-
tuon on the random response of { structural systems with auto-
parametric interaction has been determined. The Fokker-
Planck equation approach has been used to derive a general
d:m*-‘ | eq n for the P This equation

an infi d set of i which
are truncated by two closm schemes. These closure schemes
are based on the properties of the statistical cumulants. The
first, referred to as Gaussian closure. assumes that the re-
sponse distribution does not deviate significantly from nor-
mal. The other scheme takes into account the deviation of the
response distribution from bemg Gaussmn The results of
both solutions are calcul d as funcuon of
the internai detuning parameter. The Gaussian closure solu-
tion results in a quasi-stationary response, while the non-
Gaussian closure solution is stnictly stationary. It has also
been found that the random vanation of the system suffness
has more considerable effect than the effect of damping vana-
tion on the response mean squares. One last point 1s that the
mode] selected in this study is a simple structural svstem
which several characteristics resemble those encountered in
acroelastic structures, such as a wing with external store.
However, the investigation did not consider the interaction
with random aerodynamic forces that results in stochastic
nonlinear flutter. Currently, the authors are involved in a
research program supported by the AFOSR to examine the
stochastic flutter of real nonlmeu models wings and panels
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Structural dynamics with parameter uncertainties

R A Ibrahim

Department of Mechanical Engineering, Texas Tech University, Lubbock TX 79409

The treatment of structural parameters as random variables has been the subject
of structural dynamicists and designers for many years. Several problems have
been involved during the last few decades and resuited in new theorems and
interesting phenomena. This paper reviews a number of topics pertaining to
structural dynamics with parameter uncertainties. These include direct problems
such as random eigenvalues and random responses of discrete and continuous
svstems. The impact of these problems on related areas of interest such as
sensitivity of structural performance to parameter variations, design optimiza-
tion, and reliability analysis is also addressed. The paper includes the results of
experimental investigations. the phenomenon of normal modes localization. and
the effect of mistuning of turbomachinerv blades on their flutter and forced

response characteristics.

1. INTRODUCTION

The concept of uncertainty plays an important role in the
investigation of various engineering and physical chemistry
problems. In fluid mechanics, for example. the inaccuracy of
measurements is called *uncertainty” which differs from the
concept of error (Kline, 1985). An error in measurement is the
difference between the true value and the measured value. On
the other hand. an uncertainty is a possible value that the error
might take on in a given measurement. Because the uncertainty
can take on various values over a range, it is inherently random.
In control theory. the differential equations of control systems
ofien involve uncertain bounded state variables. The parameters
of transfer functions of certain models usually vary with a
certain degree of uncertainty (Ashworth, 1982). Thus a prob-
abilistic transfer function can be defined with uncertain param-
eters and can lie anywhere within the ranges which are de-
termined from simulation tests. The identification of uncertain
parameters has recently been examined by Skowronski (1981,
1984).

Another class of problems involving parameter uncertainties
is the random heterogeneity of real media which possess proper-
ties that are described in a probabilistic sense. More specificaily,
these properties vary randomly with respect to time and posi-
tion. and thus constitute a random field. The theory of wave
propagation in random media is very complicated and involves
partial differential equations whose coefficients are random
functions of space and time. The difficulty of random wave
propagation problems stems from the fact that the solution of a
linear partial differential equation depends nonlinearly upon
the coefficients (Chernov, 1960; Frisch, 1968: Sobczyk, 1985).

In physical chemistry the problem of determining the vibra-
tional properties of randomly disordered crystal lattices in-
volves the calculations of the frequency spectrum, electronic
energy levels of binary alloys, thermodynamic properties of
alloys. isotropic mixtures, and other solid state phenomena. Of
particular importance is the “normal localization™ or “confine.
ment” phenomenon which was first reported by Anderson

ASME Book No. AMRO17, Reprinted from

(1958). Anderson showed that the clectron cigenstates in a
disordered solid may become localized and results in a reduc-
tion of metallic conductivity. In structural dynamics with
parameter uncertainties, irregularities may inhibit the propa-
gation of vibration within the structure and the vibration modes
become localized. The similarities between the propagation of
vibration in an elastic system and the conduction of electrons in
a solid is discussed by Hodges (1982), Hodges and Waodhouse
(1983), and Pierre et al (1986). Several problems in phvsics and
physical chemistry pertaining to crystal lattice dvnamics were
reviewed by Elliot et al (1974) and recentlv documented 1n a
monograph by Bottger (1983).

In structural dynamics, uncertainties arise from two main
sources (Prasthofer and Beadle, 1975). The first is a staustical
one and is due, for example. to the stiffness or damping
fluctuations caused by random variations in matenal properties,
randomness in boundary conditions. and vanations caused by
manufacturing and assembly techniques. The second is nonsta-
tistical and is due, for example. to the inaccuracies and assump-
tions introduced in the mathematical modeling of the structure.
In the first class the mechanical properties of dvnamic svstems
are subject 1o a certain degree of uncertainty because the
physical properties of their elements are not measured exactly
In addition, the physical properties can experience variations
with the passage of time as a result of wear and tear or just
inherent detenoration. These properties should be modeled as
random variables with a probability distribution representing
the distribution of the measured values. This modeling results
in random eigenvalues, eigenvectors, and random responses of
the system in question. The analysis of random eigenvalues and
eigenvectors has been a subject of several studies by mathema-
ticians and engineers and will be reviewed in section 3.

Figure | shows five examples of structural systems involving
parameter and load uncertainties. They include “almost™ peri-
odic structures, similar component subsystems, multi-span
beams, rocket fins, and turbomachinery rotors. The rocket fins
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FIG. 1. Examples of disordered svstems.

are not usually identical in their areas and each fin has some
misalignment with the rocket longitudinal axis. For the case of
turbomachinery rotors, there is always some mass and stiffness
eccentricity in the disks. Parameter variations exist in disk
blades and result in corresponding variations in the individual
natural frequencies of the blades. This problem is known as
mistuning (Srinivasan, 1984) which may have a significant effect
on the forced response amplitude of the blades and also in the
value of the flow speed at which Rutter of the blades occurs.
Other examples include buried pipelines. railroad trackes. and
interconnected girders. The uncertainties in these systems affect
10 a large extent their design and operating performance.

It should be noted that parameter irregularities may cause
significant changes in the dynamic characteristics of structural

systems. In particular, they may cause the occurrence of mode
localization which can be used as a means of passive contro} of
vibrations. In civil engineering the mechanical and strength
properties of the material vary from one point to another point
and are seidom prone to certain in siru measurements but only
to indirect estimat . (Augusti ¢t al, 1984). The uncertainty of
these properties has a direct relationship to the reliability of
such structures. These uncertainties are usually manifested in
the applied loads, stiffness, and theoretical models that are used
to describe and relate loading and resistance. The design of
structures under conditions of uncertainty implies a balancing
decision between risk of failure and cost or weight (Ang and
Tang. 1984; Frangopol, 1986). The risk is an unavoidable
consideration for structural optimization problems. It has been
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customary in most reliabidity studies to measure the risk by the
probabitity of failure tie, the likelthood of occurrence of some
specitied limit state). On the other hand. when restrictions and
constraints of the design are imprecisely described. the design
objective functions become fuzzy (Zadeh, 1965, 1973 Brown,
1980: Brown and Yao. 1983). Recently. the fuzzy set theary has
been applied in multi-objective fuzzy optimization design of
ship grillage struswres (Gangwu and Suming. 1986).

The degree of sensitivity of structures to either deterministic
design changes. or stochastic parameter variations is of great
importance to the structural dynamicist. In particular, it is
essential 0 determine if small perturbations can result in sig-
nificant changes of the free or forced response amplitudes. This
sensitivity analysis is of great concern to those who are involved
in the control of large flexible space structures (Meirovitch e1 al,
1983; Nurre et al. 1984). These structures possess several modes
densely packed at low frequencies. When they are aescretized,
model errors occur and the free modes of vibration cannot be
determined accurately. Thus when a control system is designed
for natural frequencies whose values are assumed 1o be exact.
the model errors and structural uncertainties may deleriorate
the performance of the control loop. and may even make the
svstem unstable. This problem results in what is known as
robustness, ie, a contsol system is termed robust if it is rela-
tively insensitive to model errors and structural uncertainties.

This paper provides a review of the recent theorems and
results pertaining to structural dynamics with parameter uncer-
tainties. An early account of the subject was provided by Soong
and Cozzarelli (1976). Three main problems will be addressed.
These are:

1. Random cigenvalues.
2. Random response characteristics. and
3. Design optimization and reliabilitv.

Before reviewing these three problems the differences between
parametric random vibration and structural dvnamics with
parameter uncertainties will be discussed tirst.

2, BETWEEN PARAMETRICALLY EXCITED AND
DISORDERED SYSTEMS

It 1s very important to disunguish between two types of
parameter variations encountered in structural dvnamics. The
first tvpe arises due to random parametric excitation of svstems
with essentially fixed propertes while the second class is inter-
na) and 15 associated with the system when its parameters are
represented in a probabilistic sense. In the former case the
system equations of motion are stochastic differential equations
with random coefficients represented by random processes
(Ibrahim. 1985), while in the latter case the equations of motion
are differential equations with random parameters represented
by random variables (Soong, 1973). The methods of treating
dynamic systems under parametric random excitations are dif-
ferent from those used in solving differential equations with
random vanable coefficients. Parametric random vibration is
basically a combination of the theory of stochastic processes,
stochastic differential equations. and applied dynamics. Svstems
with parameter uncertainties (referred to in the literature as
“disordered systems™), on the other hand. involve boundary-
value problem and random field theory (Vanmarcke, 1984). The
term “disorder” has been extensively used in the literature to
distinguish between the case of random perturbation of the
system parameters (described by a probabilistic law) and the
case when these parameters are perturbed in a deterministic
sense.
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3. RANDOM EIGENVALUES

3.1. Basic concept of random eigenvalue

The value of the natural frequency of siumple single degree-
of-freedom systems is given by the square root of the sufiness o
mass ratio. This value is assumed by constant for idenucal
systems. However, experiments have shown that this value
varies randomiy (Mok and Murray. [965) because in reality the
physical properties of the clements can neither be measured
exactly nor manufactured exactly. Thus, the eigenvalues are
random variables whose statistical properties are determined bv
the random coefficients of the inertia and stiffness terms of the
equations of motion. Consider for example the natural frequency
of a simple mass-spring system

the variation of A due to variations in stiffness k = A ~ 84 and
mass m = M +8m. may be expressed as a Tavlor senes

ax ax
SA=A-A= - — 8k~ —
Y 8k Fp dm
131)\“. 1(93)\8 .
- — Y e —— T
ZBk:( ) 3 dm:( m) <D

where overbar quantities refer to mean values and A =4 1

When the variations §m and 8k are random vanables the
natural frequency will be a random varable. The mean and
variance of A can be evaluated as follows

x
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The same is applied when the mass moment of inerua
inciuded in the equations of mouon. Collins and Thomson
(1967) derived the staustical charactensucs of principal mo-
ments of inerua and principal axes directions.

Generally. the structural dvnamicist is nterested 1n Je-
termining the probability that one or more cigenvalues lic 1n 4
given range or less than a certain value {Bovee. 196%). However,
the probabilistic description of the eigenvalues and the eigen-
vectors has been examined for a limited and simple clasy of
problems. In most cases. it 1s possible 10 calculate the statistical
functions (such as expectations, variances, and covariance func-
tions) of the eigenvalues and eigenvectors.

The random eigenvalue problem has been examined for a
limited number of linear discrete and continuous svstems. The
treatment of these systems is based on the analysis of random
matrices and random differential operators (Scheidt and Purkert.
1983). The next subsections will review the methods and mamn
results reported in the literature.
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3.2. Random eigenvalues of discrete systems

The statistics of random eigenvalues and eigenvectors of
discrete systems may be determined by using one of three main
approaches. These are the transfer matrix method, the random
perturbation method, and the Monte Carlo numerical simu-
lation algorithm. The transfer matrix method (Kerner 1954,
1956; Soong, 1962) utilizes a perturbational expansion of the
random eigenvalues in terms of the random perturbations of the
system parameters. The perturbation method is based on an
asymptotic expansion and combines the ordinary perturbation
and multivariate statistical analysis. The multivariate estab-
lishes the probability distributions of random eigenvalues in
terms of the distributions of the matrix coefficients in the
equations of motion. The Monte Carlo method, on the other
hand, generates a random sample of the system random param-
eters which are used for computing numerically the eigenvalues
and eigenvectors for each set of par s in the pl
Monte Carlo simulations are expensive since they require a
large number of numerical solutions to define the probability
level at the tails of the distribution. This disadvantage becomes
evident when one deals with large or medium size systems
where numerical sinulations become unrealistic on conventional
digital computers. The first two methods will be outlined in the
next two sections.

3.2.1. Transfer matrix method

This method was first developed for disordered periodic
lattice systems by Kerner (1954, 1956). It was adopted by Soong,
and Bogdanoff (1963) to examine the statistics of the random
cigenvalues of disordered spring-mass chain of N degrees of
freedom of the type shown in Figure 1(a). Basically the method
is an extension of the transfer matrix developed originally for
free vibration of deterministic discrete systems (Thomson. 1981).
The method transfers the displacement vector {X), of the jth
mass into next mass displacement vector [X],. . ie

(X}, =(1+T),..{X), ... (4)

where 1 is the unit matrix and (I + T) is the transfer matrix. The
first displacement vector {X}, is related to the last displace-
ment vector {X}, by the relationship

{X)u-[r_ll[l+rl,]{X>v- (5)

In order to demonstrate the method, a periodic disordered
chain with random masses and constant equal springs of stiff-
ness K will be considered. Let the random mass be defined by
the expression

m=m(l+e,), (6)

where i is the mean value of the mass and ¢, is a small
random variable with zero mean.
The transfer matrix can be written in the form

[l+T]l-[l+T]I+[E]I' 0

where [E], is a perturbational transfer matrix which results
from the random perturbations ¢,.

The characteristic equation can be established from eq. (5).
The roots of this equation are the system eigenvalues w,. In
order to determine the statistical properties of the eigenvalues it
is necessary to express w, in terms of the random variables ¢,.
It will be assumed that the range over which the values of ¢, are
distributed is small and w, can be explained in powers of the
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random variables ¢,:

v N
wym B+ X owy e+ L e

=1 =1
N-1 N
« Y Zo‘/‘(/(‘* (Ra)
Jol k=2
k>
N
23, + ) w,e, forsmale, n=12. N (¥b)
s=1

Let the random variables ¢, be statistically independent. ident-
cally and normally distributed with zero mean. This means that
the probability density function of each is

1 2 o2
ple) = o exp{ -¢/202 ). (9

where ¢ is the variance of the random variable ¢.

From the theory of random processes (Laning and Battin.
1956), it is known that if the random variables ¢, are indepen-
dent and normally distributed the random eigenvalues will he
normaly distributed with mean value &, and variance
o LY. i, These two statistical parameters provide the ele-
ments of the probability density function of w;, ie

1 s
plw,) oﬁmcxp{ (w,-,) /20 w}, (10)

Figure 2 shows p(w,) and the standard deviation o, for a
spring-mass chain of 10 degrees of freedom with o, =0.05. It iy
seen that the randc of the results in a considerable
dispersion in the high frequency region. The standard deviation
of the random eigenvalues increases with the standard deviation
of the mass perturbations ¢, according to the formula (Soong.
1962) )

12

(& .
0. /0=« ¥ Wi . (11)
=1 ’

3.2.2. Random perturbation method

The perturbation method for the deterministic eigenvalue
problem is well documented (Cole, 1968: Meirovitch, 1980)
The method has recently been extended for random eigenvalues
by Scheidt and Purkert (1983). The eigenvalues of discrete
systems are usually determined from the conservative part of
the system equations of motion whose eigenvalue equation :\
given in the form

(K(s}-AM{s)){x) = {0). (12

where K(s) and M(s) are symmetric stiffness and mass matnces.
respectively. The elements of these matrices are taken from the
entire sample space S, ic, sC S. A, and (x}, are the ;th
eigenvalue and eigenvector, respectively. The random matnices
K(s) and M(5) can be written as the sum of determunistic and
random matrices

K(s) =-K+k(s).
M(s) =M +(s). (14

where i(s) and f(s) represent random fluctuations in the
stiffness and mass ‘matrices, respectively, with 2ero means such
that

|i(:)|-{ i l;,z,(:)\: <e,.

=1 ,
and |
|i-(s)|-{ T 'ﬁ.‘,(s)}]«m (14)
AR}
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Alternatively. the problem can be stated by transforming eq.
(12) into the standard form

[A - AL){x} = {0}, (15)

where A is the system dynamic matrix which is symmetric
positive and has the random perturbational form

A(s) =A+a(s). (16}
The deterministic matrix A has the simple eigenvalues
A <A,< ... <A, (1

while the random matrix A(s) has the random eigenvalues
A(s) <As{s) < - <AL(s). (18)
it is clear that the existence of the first two moments of the
eigenvalues A,(s) is implied by the existence of the first two
moments of the elements of A(s).
The eigenvectors {x}, are normalized by the relation

(x,.x,) =1, (19)

where (x,.x, ) denotes the scalar (or 1aner) product of the same
vector x,. ie { x }7{x},. Introducing the two expansions

Ads)=X,+ ¥ X, (5) (20)
k=l
{x(s)), = (%), = X (&)}, (1)
kel
where (X}, =(0,0..... 0.14,0,..., 0) is the normalized cigenvec-

tor associated with A,. A , (s) and (X(s)),, are the contribu-
tions due to the penurbeé elements of &(s). From the analytical
dependence of A and (x}, on the elements of & s), Scheidt and
Purkert (1973) showed that expansions (20) and (21) converge
at least for sufficiently small values of the clements of a(s). The
homogencous terms A , (s) and {x(s)},, up to fourth order are
given by Scheidt and Purkert (1983). These terms can then be
used to determine the expectations and correlation refations of
the random eigenvalues and eigenveciors. If the correlation
between the elements of a(s) = [a, ] are only given. then up to
first-order perturbation the means of the eigenvalues and eigen-

vectors are "
E=[A(s)] =X« L E[a,a /A ~ . ()

1=
LY

1
E[x(:),]-(l - SE[(R )] Jx
IEINE ()
where A, =X =X . (Z},,={Zy. 2. ..Z.,; . and the ele-

ments of { Z},. are given by the expression
L a1 1 .
Z.) = — — - =
(Z.) A...IA); )‘A’a,‘ut X PE] |
Awmy

fori=yand{(Z. | =0

On the other hand. the correlation relations of the exgenval-
ues and eigenvectors up to the (k + 1)-th order 1n the perturba-
tions ¢, are

Ry ky=E[N A ] =E[a,a,]
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The analysis is called first order perturbation if first-order
terms in expansions (20) and (21) are retained and higher-order
terms are excluded. It is second order if terms up to second
order are kept. However, second-order perturbation is tedious
and involves multivariate statistical analysis. Most of the
analyses reported in the literature deal with the first-order
perturbation.

Problems involving a random symmetric matrix with multi-
ple eigenvalues of the unperturbed matrix have been treated by
Scheidt and Purkert (1983). The analysis consists in the formu-
lation of a convergence condition for the perturbation expan-
sions.

Collins (1967) and Collins and Thomson (1969) considered
first-order perturbation and derived the eigenvalue and eigen-
vector statistics of a multi-degree-of-freedom system in terms of
the covariance matrix of the system elements. With reference to
the eigenvalue eq. (12) they showed that the variations in the
mass and stiffness matrices result in the following first order
variations in the eigenvalue and eigenvector, respectively:

2
L

- DA A
A - —(m =)+ . (2
A= ]Z_:Iak(k k) + B g (mm )+ (29)

Z (k k)+z—‘(m,-’"/)+"'
AL
(26)

If the elements of the mass and stiffness matrices of eq. (12)
are random variables with means &, and m, and variances o
and o, then the expected elgenvafues and’ eigenvectors are i
and X, respecuvclv and the variance of the eigenvalue is

of =Var(\)) = Z Zak —cov(k k,)

S =i l=l

+ZZ z a—k':'ja—;cov(k m,)}

an, s
b Z Z m<mcov(m,.m,) (-7)

where
- - _
cov( k.. k,) -j f(k,—k,)(k,-k,)p(k,.k,)dk,dk,
-

=0,0,,f0,. (28)

and p(k,.k,) is the joint probability density function for K,
and K, and p, is the correlation coefficient for &, and &,.
Expressions for cov(k,, m,) and cov(m,. m,) follow the same
format of relation (8).

For a simple chain of equal springs and masses with uncor-
related random masses or with random uncorrelated stiffnesses,
Collins and Thomson showed that the standard deviation of the
frequency is governed linearly with the standard deviations of
the masses and stiffnesses. The resuits were confirmed by an
independent Monte Carlo simulation and were very close to
those obtained earlier by Soong and Bogdanoff (1963). How-
ever, these linear relationships disappear when correlation exists
in the masses or stiffpesses and the eigenvalues are not closely
spaced. Recently Pierre (1985) considered two different discrete
systems and employed a first-order perturbation to solve for the
statistics of their cigenvalues. The first system is a mass-spring
chain with random mass and the second is a chain of coupled
pendula with random lengths. His results were found identical
to those obtained by Soong and Bogdanoff.
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Schiff and Bogdanoff (1972a,b) derived an esumator for the
standard deviation of a natural frequency in terms of second-
order statistical properties of the system parameters. The de-
rivation was based on the mean square approximation devel-
oped by Bogdanoff (1965, 1966).

It may be noticed that the statistical properties of random
eigenvalues are usually based on the assumption of normal
distribution of the system random parameters. However. for
correlated non-Gaussian parameters the analysis can be per-
formed in terms of another set of Gaussian random parameters
which are evaluated by using the Rosenblatt (1952) transforma-
tion. This transformation has extensively been used in reliabil-
ity analysis when the performance function is nonlinear. This
issue will be addressed in detail in section 5.1.

33. Random eigenvalues of continmous systems

3.3.1. Methods of analysis
Continuous systems may involve uncertainues from two
main sources. These are (Boyce and Goodwin 1964):

(1) Uncertaintics in the geometry and the matenial proper-
ties. The random variation in space dependent parame-
ters results in variations of the differential operators
governing the free vibrations of the structure.

(1) Uncertainties in the support mechanism of the »ystem
(or the boundary conditions).

The uncertainties of the first class constitute a random field.
According to Vanmarcke (1984) the behavior of disordered
systems is governed by two general laws. The first is a statement
of *“conservation of uncertainty” as measured by the product of
the variance by the scale of fluctuation of the property in the
random fieid. The scale of fluctuation is taken as the arca under
the correlation function. This product remains invariant under
linear transformation that preserves the mean. The second law
states that the degree of disorder of a homogeneous random
field, as measured by the direction-dependent bandwidth mea-
sure, tends to increase when a random field is subjected to local
aggregation.

For the two classes of uncertainties the random eigenvalue
has been determined for a limited class of dynamical systems
These include elastic strings and bars (Boyce, 1962: Goodwin
and Boyce, 1964) and elastic beams (Boyce and Goodwin 1964:
Bliven and Soong, 1969: Hoshiya and Shah. 1971: Shinozuka
and Astill, 1972; Vaicaitis 1974). Boyce (1968) outlined a num-
ber of techniques for determining the statistics of the eigenval-
ues of systems described by partial differential equations and
boundary conditions involving uncertainty in their parameters.
These differential equations are of order 2 and usually written
in the form

Lw(x)=Mw(x). (29)
subject to the boundary conditions
¥ (w)=0, i=1,2..... 2n. (30)

where &, A, and ¥, are differential operators (with respect to
the spatial coordinate x) whose coeflicients are random vari-
ables. w(x) is the displacement of the system at x. Equation
(29) involves values of w and its first 2n — 1 derivatives at the
end points of the interval in which solutions are sought. The
cigenvalue problem defined by egs. (29) and (30) is assumed to
be self-adjoint and positive definite. The investigation of ran-
dom eigenvalues has been carried out via analytical or numeri-
cal approaches. The numerical methods include the Monte
Carlo simulation and stochastic finite element methods. The
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analytical treatment of the random eigenvalue problem of sys-
tems described by eqs. (29) and (30) is outlined by Boyce (1968)
and Scheidt and Purkert (1983). The mathematical methods
which have been used to determine the statistical mc of
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Boyce (1966, 1980) considered a Sturm- Liouwille problem with
a stochastic nonhomogencous term. [n their recent monograph
Sheidt and Purkert (1983) analyzed the moments of the e

are classified according to whether the statisticai or
nonslausucal part of the analysis is perfonned first. One class
consists of first expressing the solution in terms of the system
parameters, without regard to whether these parameters are
random or deterministic. Having obtained such a solution. the
statistical properties are then determined. According to Keller
(1962, 1964) this approach is referred to as “honest” and the
solution can be determined by using one of the following
techniques (Boyce, 1968: Scheidt and Purkert, 1983):

(+) Perturbation methods.

tu) Vanational methods.
(1i) Asymptotic estimate methods.
(iv) Integral equation methods.

The “honest” approach does not provide an exact soluuon and
the above four methods are not suitable for every problem. For
example, the vanationai methods are not suitable for structures
with random boundary conditions. Vanational methods and
integral equation methods are limited because they only lead to
statements (or the first cigenvalue of the system. Moreover. in
order to apply the integral equation methods, very strong
conditions for the calculation of the mean of the cigenvalues are
required. Under certain conditions pertaining to the spaual
correlation function. the asymptotic methods and perturbation
techniques lead to the same results. The perturbation methods
have less restrictions and are extensively used in the literature.

The approach, on the other hand. is called dishonest”
(Boyce, 1967) if the stauistics-of the eigenvalue problem are
directly determined by performing averaging analvsis to the
system’s partial differential equation and its associated boundary
conditions. The statistics can be evaluated by using one of the
foilowing methods:

(1) Iteration methods.
() Hierarchy methods (Haines, 1965, 1967. Adomian,
1983).

The iteration methods are based on some assumptions for the
correlation relations in order to soive the averaged integral
equations of the random cigenvalue. The hicrarchy methods
take into consideration further equations so that all staustical
functions in question can be calculated.
In a series of papers by Purkert and Scheidt (1977, 1979a.b).

a number of theorems pertaining to functionals of weakly
correlated processes encountered in the eigenvalue problems,
boundary value problems, and initial value probiems were
established. They treated the stochastic eigenvalue probiem for
ordinary differential equations with deterministic boundary
condluons The coefficients of the differential operator were

dependently weakly correlated processes of small correlation
spatial length. They showed that as the correlation length
becomes very small, the eigenvalues and cigenvectors possess
Gaussian distributions. This result has recently been confirmed
by Boyce and Xia (1983). When the random terms are not smail
the perturbation method is no longer valid and the second term
in the Hermite-Chebychev expansion (Ibrahim. 1985) of the
distribution function will not vanish. This implies that the
distribution of the eigenvalue will not be normal. Boyce and
Xia (1985) obtained the upper bounds for the mean of eigenval-
ues through a variational characterization of the eigenvalues.
For stochastic boundary value problems Linde (1969) and

lues and mode shapes of random matrices and random
ordunry differential operators. The calculations of these mo-
ments were based on perturbation expansions. and so required
the random terms to be appropriately small. Day (1980) de-
veloped a number of asymplotic expansions for the random
cigenvalues and eigenvectors of continuous systems,

The concept of the Wiener field, which is obtained by
replacing the time vanable of the Wiener process by a space
coordinate, was adopted by Wedig (1976, 1977) as a basic
model for randomly distributed loadings or imperfectons of
continuous structural systems. The solution of such boundan
value problems may thus be described by integral equations
defined on the Wiener field and thus possesses the Markov
properties. Wedig showed that these integral equations may he
interpreted in the mean square sense via the boundarv and
cigenvalue problems of elastic structures with random distrib-
uted imperfections or loadings.

3.3.2 Applications

The random cigenvalue of a column under axial force F
shown in Figure L(f), is described by the second order partial
differential equation
a—EJ( ) .d w({.l) ‘Fz? w{ (,") . Al ‘)(3 w( f.!) -
dx- dx- dx- dr-

3l
and the boundary conditions:

Bo)a w(x.1) Kr?u(\.l) o
( T---v‘ lT\.-n" .
w{l), r) =10
(1
Fiw(x.1) dwix.1)
EI(L)———‘_,’K: L.y =0,
dx- dx
wil.ry=0,

where w(x. 1) is the lateral displacement at distance + and ume
r. L 1s the length of the column, El( x) 1s the fAlexural stiffness,
and pA(x) is the column mass per usut length. K. and K. are
the stiffnesses of the end springs. For simple suppnm K, =K
= (). and for fixed supports K, = K. = x

The solution of eq. (31) may be expressed 1 the form

wix. ) =3 U( X)expliwr) (33
[ntroducing the following subsututions
X=x/L.
HX)=I[1+a(X)].
AX)=A[L+a(X)].
u=FL /EI
A=pAL's /L
where a( X) and «( X) are random variables. eq. (31) and the
boundary conditions (32) for mode ; become:
{([1+a( XU (X)) +pU"(X) -A[1 +a( XH]U(X) =0
(34)
[1+a0)]U”(0) - (K,L/EDU(0)=0.  L(0) =0

{1 +a«(D)JU”(1) + (K, L/EDU(1) = 0. U(1) =0,
(35)
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where a prime depotes differenuauon with respect to X. and
subscript 4, indicating the mode oumber in cxpansion (33), 1s
removed.

Hoshiya and Shah (1971) employed the standard perturba-
tion analysis to determine the expected value and vanance of
the eigenvalue of the nth mode by using a linearized perturba-
tion technique. They found that the vanance of the nth natural
frequency is proportional to the variances of the stiffness coeffi-
cients at the boundaries and the axial load. This linear relauon-
ship implies that the principle of superposition can be applied
in a modified form. For the buckling case. ie, when A = 0, the
cigenvalue problem is reduced to determine the staustics of the
buckling eigenvaiuve (Augusti ct al, 1981, 1984). Shinozuka and
Astill (1972) considered the case when both X, and K are
random variables.

The natural frequencies of transverse vibration of elasuc
beams were analyzed by Boyce and Goodwin (1964). They
considered the geometry of the cross-section of the beam and its
support mechanism as random vanables. The statstics of the
cigenvalues were determined by using three different tech-
niques. These were the perturbation method. the method of
integral equations, and numerical solution. Bliven and Soong
(1969) determined the statistics of the natural {requencies of a
simply supported elastic beam with random imperfecuons in
the beam stiffness. The beam was modeled as a lumped-parame-
ter model and the properties of the (requencies were denved by
using a perturbation method. The stiffness random vanation
was rep! d by the rel

El=EL {1 « a(x)].
where El 15 the mean value of the beam stiffness and ( ¥} 1s a
stationary random field process with zero mean and autocorre-
lation function given by the relation
Ela(x,). af x2)] = oexp( —|x, - v;i/d). { 36)

where 4 1s a non-negative constant known as the correlation
distance.

The standard deviation of the natural frequency of the beam
was obtained in the closed form

g (n)=a(n)eyglin). (30

where @(n} s the nth mode natural frequency of the umform
beam = n n, El/mi*.

g(n) -[nll)lsm“(nrx,)sm:( nex,)

xexp —|x, = x;l/d]dxdx;.

and m is the beam mass per umt length.

Bliven and Soong found that when the stiffness fluctuation
has zero correlation distance d = 0, the natural frequency stan-
dard deviation vanishes. The standard deviation was found 1o
reach the valuc of o, (n)=0.5&(n)s when the stiffness vari-
ation is perfectly correlated (d — ).

The random eigenvalue of a beam-column supported at its
ends by a rotary springs was examined by Shinozuka and Astill
(1972). The spring supports and axial applied force were treated
as random variables. The distribution of material and geometric
properties were considered correlated homogeneous random
functions. The distributions of these properties were generated
by using 2 Monte Carlo simulation for multivariate and mul-
tidimensional random processes developed oniginaily by
Shinozuka (1971). The mean and variance of the eigenvalues
were determined by using the perturbation analysis and Monte
Carlo simulation. It was found that the application of ap-
proximate methods, such as the perturbation technique based
on exact or an assumed mode shape. causes a considerably
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greater error for the buckling case than in the vibranon case
Furthermore. the perturbation solution for the exgenvalue van-
ance can be approximated reasonably well by using an assumed
mode shape in place of the unperturbed mode shape. Vaicaitis
(1974) employed a two-vanable perturbation expansion proce-
dure to determine the eigenvalues and normal modes of beams
with random and/or nonuniform charactensucs which do not
deviate considerably from the beam mean properties. A Monte
Carlo simulation was used to determine the staustical averages
of beam eigenvaiues and mode shapes. Two cases of random
fluctuatons of beam cross section were considered. For one
particular case there was significant deviauon atinbuted mainly
1o the fact that gradual change in the beam suffness was
permitted. In this case the beam is “soft” at one end and
“hard™ at the other end.

Hart and Collins (1970), Collins et al (1971). and Hasselman
and Hart (1971, 1972) developed a numerical method for com-
puting the vanance of structural dynamic mode properties by
using component mode synthesis which was formulated ongi-
naily by Hurty (1964, 1965). Numerical solution provided rea-
sonable results for lower modes even when a relativelv small
percentage of available component modes 1s used. Hart (1971
developed a general algonthm for caiculaung the staustics of
the natural frequencies and mode shapes of structures acted
upon by an external static loading. This type of problems
involves considerable caiculations due to the fact that the
proportionate axial load 1n each member of the structure :»
dependent upon the structural parameters which are random
vanables. For the two-bar truss shown in Figure 3 Hart de-
termined the first natural frequency’s mean and standard dev:a-
tion. The influence of the stauc load on the statistics of the tirst
natural frequency is shown in Figure 4 It is seen that the
standard deviauon of the natural frequency increases with the
axial Joad. The implication of this increase was further demon-
strated 1n Figure § by using normal probability densitv func
tion. The observed flattening shape of the probability density
function with increased compressive loading shows a marked
decrease in confidence with the magnitude of loading.

The random eigenvalue problem of disordered penodic beam
was considered by Lin and Yang (1974) Thev used a first-order
perturbation procedure to denive expressions for the vanances
of natural frequencies and normal modes for different cases of
random bending stiffness and span lengths. The natural (re-
quencies were found to be more sensiuve to.span variations
than to bending suffness fluctuation. It was shown that if the
random varniations in bending stiffness for different spans are
uncorrelated then there is no effect on the statistics of the
eigenvalues. The effect exists only when there is a correlation n
the random vanation in the individual spans. For a random
variation in the span lengths it was shown that the vanance of
the natural frequency is inversely proportional to the number of

FIG. 3. Two bar truss (Hart, 1973y
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spans. The random imperfections in spatial penodiaty also
resulted 1n variability in the normal modes. However, due to the
arbitrary choice of modal amplitude the vanance of the normal
mode was not a unique function of space.

The statistics of natural frequencies of mistuned blades of a
circumferentially closed packet of turbomachinery were ex-
amined by Ewins (1973) and Huang (1982). When the bladed
disk assembly is tuned and all the blades are identical the
natural frequencies and mode shapes are quite regular. Each
mode may be described as having a particular number of nodal
diameters, just as for an unbladed disk. However, when the
blades are mistuned to a degree which might well exist in
service, the mode shapes.and frequencies become irregular. In
this case the natural frequencies of the individual blades can be
randomly different from one another. This problem is belonging
to systems with periodic random parameters and such systems
are modeled by a stiff ring supported by transverse springs with
randomly distributed stiffness and mass parameters. Huang

adopted an exponential form for the auto- and cross-correlation

function of the random structural parameters. This form was

oniginally assumed by Hoshiya and Shah (1971). The analysis of
Huang was based on a spectral analysis method. He found that
the mean of the natural frequency of the structure with random
parameters is identical to the natural frequency of the structure

with homogencous parameters. The standard deviation of the
natural frequency of mth mode was expressed in terms of the
(2mth Founer coefficients of the random parameters and was
represented as a vector sum of their standard deviations. While
the normal modes of a homogeneous structure have a shape of
harmomic waves with svmmetncally located nodal diameters.
for a structure with random parameters the mode shapes arc
complicated and the nodal diameters are located unsvmmetn-
cally. It was shown that these modes have a shape involving not
only the main harmonic, but also an infinite number of harmon-
ics. In addition. these random normal modes are orthogonal
despite their complicated form. Another important feature was
that the phase angles of random normal modes are not arburan
(as 1n the case of a homogeneous structure) but are random
variables independent of the imual conditions

Recently. the stochastic finite element method has been used
by Nakagiri et al (1985) to determne the uncertain eigenvalue
of fiber reinforced plastic (FRB) lamunated plates These com-
posite materials usually exhibit anisotropy and heterogeneity
The elasuc constants may fluctuate around the mean vaiues duc
to some slackness during the manufactunng process which
causes spatial distnbution of the volume fraction In addiuon,
another parameter known as the stacking sequence 14 usually
used as a major design parameter of the FRB laminated plates
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FIG 5. Probability density function variation with apptied load (Hart. 1973
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The stacking sequence (Vinson and Chou. 1975) implies a group
of parameters such as clasuc constants, laver number. fiber

Appi Mech Rev voi 40. no 3 Mar 1987

uregulanues in shr~uded blades of jet engine rotors can result
10 a stabilizing mechamsm winch is closelv connected with the
phenc of mode localizavon. [n the framework of focal-

onentation, and layer thickness. Nakagin et al considered the
effect of the fluctuation of the overall suffness due 10 uncertain
variation of the stacking sequence. The uncertain stacking se-
quence was treated as a set of random vanables for the case of
simply-supported graphite/epoxy plates. It was found that the
eigenvalue is more sensitive 1o the standard deviauon of the
fiber orientation, and the effect of the stacking sequence 1s more
pronounced for the rectangular plate than for the square one.
3.3.3. Normal made locaiization

Periodic structures with slight vanauons in their penodicity
can exhibit a2 phenomenon known as normal mode localizauon.
This phenomenon takes place in a manner that vibratonal
energy injected into the structure by an external source cannot
propagate to arbitrarily large distances. but 1s instead substan-
tially confined to a region close to the source. Hodges (1982}
cailed this phenomenon as “Anderson localizauon™ due to
Anderson (1958) who discovered mode localizauon in solid
state physics in an attempt to understand electnical conduction
processes in disordered solids. The effect of irregulanues has a
similar effect to damping 1n that 1t limuts the propagauon of
vibrations at large distances from the excitaton source. This
effect is mainly caused by confinement of the energy close to
the source, not by dissipation of the energy as it propagates out

The phenomenon of mode localizaton can be well under-
stood by using the coupled pendula exampie {Fig. 1(b)] which
was adopted by Hodges (1982). Hodges provided an excellent
explanation of mode localization: If all pendula are denucal so
that their individual natural frequencies are precisely equal.
then the normal modes of oscillation when these pendula are
coupled together extend throughout the systemn. the amplitude
of oscillation of each pendulum varies sinusovdally with 1ts
position in space. On the other hand. if the natural frequency of
oscillation varies from pendulum o pendulum in some kund of
random fashion, ‘then in the limit of zero coupling, normal
modes consist of oscillation of individual pendula at frequen-
cies equal to their natural frequencies. For small coupling the
normal modes remain localized close to individual pendula and
the normal mode frequencies approximate the natural frequen-
cies of the pendula. Thus for a parucular mode one pendulum s
oscillating close to its natural frequency with a large moton. Its
nearest neighbors. unlike the ordered system. are driven off
resonance, and since the coupling is weak they respond with
much smaller amplitudes. These neighbors in turn drive pendula
further out and so on. but at cach step the dnving force and
response tend to diminish in magnitude. A tvpical mode shape
diagram is shown in Figure 6. In terms of forced oscillations.
mode localization implies localization of the response 1n the
vicinity of the excitation point.

The effect of mode iocalization was examined by Bendiksen
(1984a.b) and Valero and Bendiksen (1985) who showed that

w(l)

w(l) w(2) v(n)

FIG. 6. 5ch ic di of the site amplitude w(:) for a local-
uednofmalmode(Hodges.l%Z)

zauon theory, the stabihrning mechanism 1s expiained based on
the fact that the onginal moaochromauc flutter wave 1s scattered
into waves of different and more stable wavelengths and nter-
blades phase angles. While the effect of mistuning between
turbomachinery blades s favorable 1 fAlutter (see also Kaza and
Kieib, 1982) 11t can lead 10 an iacrease in amplitude on 4t fcast
one blade 1n forced vibration situation as will be shown in
section 4.1.2.

For penodic multispan beams Miles (1956) showed thal the
natural frequencies are clustered 1n an infinute number of groups.
or bands, with » frequencies 1n each band. where n o the
number of spans. If s wrnomal spang 1s placed at the n - |
intermediate support locaton, then the width of the frequency
bands dimumshes as the spring constant 4 increases In the
limit as the spnng coastant goes 10 infimty. the beam hecomes
clamped at the constrant Iounons and the width of the
[{ y bands 1s reduced 10 zero. Prerre et al (1986) estab-
lished an internal coupling parameter which is equinvalent to the
inverse of the torsional spring constant 1. 4, For &, =0 the
spans are fully coupled. For large values of the spring constant
and iregular spacing between supports. a multispan beam can
be regarded as a disordered chain of weakly coupled subw -
tems. Pierre (1985) and Pierre and Dowell (1986) developed 4
theoretical analvsis {or the mode localization phenomenon and
indicated that the free modes of vibration are suscepuble o
becomng localized and the natural frequencies of the muluspan
beam are in bands of small width if the spring constant 1 large
They proposed a general cntenon stating that localization mas
occur 1if the wdth of the frequency band of the ordered svstem
1s of the order of. or smaller than. the spread in individual
natural [requencies of the disordered component systems

Pierre et al (1986) determmed the Iree modes of transverse
vibration of a disordered two-span beam by using a Ravieigh
Ritz formulation with the comstraint conditions enforced b
means of Lagrange multipliers. They developed a modified
perturbation method to analyze the localized modes. Figure
shows the mode shapes for tuned and mistuned beam for
torsional spring parameter ¢ =~ 1000, where « = 2/k,, El. [
the length of the beam and E and / are the Young's modulus
and area moment of inertia of the beam. respectively For a
mstuped beam 1t 15 seen that mode localization 15 manifested in
that the peak deflection is much larger in one span than in the
other one.

4. RANDOM RESPONSE

The response of linear structural components with uncertain
arameters can be determined by using standard techniques
such as the impulse and (requency response functions and
perturbation methods. or numencal approaches such as stochas-
tic finite methods and Monte Carlo simulation. The results
reported in the literature will be reviewed 1n the next two
subsections.

4.1. Standard techmiques

4.1.1. Simple ssructaral componewts

In an attempt 10 examine certan aspects of the dvnamical
response of statistically defined systems, Chenea and Bogdanofl
(1958) and Bogdanoff and Chenea (1961) considered a lincar
single degree-of-freedom system with independent discrete dis-
tributions in the mass, damping. and stiffness coefficients. The
analysis of Bogdamoff and Chenea was based on a partial




-y

L At

Appi Mech Rev voil 40, no 3, Mar 1987

Ibram  Structural dynamics with paramete: uncenaint:es 319

wx/L) §
tuned ,—~\l1.tm.d
, \
7 \
y \
Vi \
/ \
/ \
0.5 /’ \
’, A
. \ X
-~ Faat T
bl -
~~=--"" 0.9 t
First mode
v&)
L
-
. N tuned
// \
p) \
/ \
/, \
/ \
\ 0.5 aistuned
\ - -
N\ = - X
Y LS
.49 1 L
Second mode
FIG ~ First two mode shapes for tuned ( —) and mustuned (- - -) two-span beam X/ =001, = 1000 (Pierre et al. 19%61

differential equation for the response joint density function
(Kozin, 1961). This equation is known as the Liouviile equation
(Soong, 1973) and is identical to the Fokker-Planck equauon
with zero diffusion coefficient. Small dispersions in the system
parameters were found to result in a considerable dispersion in
the frequency response. The impulse response of the same
system was determined by using the perturbation method by
Chen and Soroka (1973). They idered a linear sys
described by the differential equation

X+ 2w, X+l X=f(1), (38)

where the natural freq Yy is idered random w, =&, +
«“w, u,,nsaoomumandthepermrbauonu is a random

variable with zero mean. ¢ is a small perturbational parameter
and f(¢) is an impulse excitation. Chen and Soroka derived the
solution of equation (38) by using a perturbational technique.
Figure 8 shows a sample of the time history response curves for
damping ratio { = 0.05. Tt is seen that both the mean and

standard deviation of the response amphtude are nonstationan
and the standard deviauon is 90 degrees out of phase from the
mean. The amphlitude of the response standard deviation in-
creases with time. and graduallv dampens out after 1t reaches a
certain level. For systems with a verv lugh natural frequencs
the uncertainty mn the natura’ frequency was found to have ven
small effect on the response “tatisucs. However. the effect 1s
significant if the natural frequency 1s low As the damping
factor decreases. the dispersion from the mean became substan-
nal.

The response of multi-degree-of-freedom systems with ran-
dom parameters was examuned by Soong and Bogdanoff (1963,
1964) and Chen and Soroka (1974). Soong and Bogdanoﬁ'
determined the of the impul
frequency response of a linear chain with random masscsdss-
tributed in a small range. Chen and Soroka developed a method
which relates the statistics of response parameters 16 the statis-
tics of the system eigenvalues and eigenvectors Thev showed
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that the response staustics of disordered svstems are higher
than those of purely deterrimstic systems. The :nstantancous
transient response s of an undamped linear mulu-
degree-of-freedom system. with random suffness. subjected to
arbitrary but determunistic forcing functions was investigated
hv Prasthofer and Beadle ¢1975). For the case of an impulsive
excitation. they found that the growth of the response uncer-
tainty s exponential. As the standard deviaton of the suffness
increases the response mean square increases rapidly with ume
For a muiti-degree-of-freedom system the response decav rate
decreases as the correlation coefficient between the suffness
clements increases. The influence of damping uncertainty on the
frequency response of a linear multi-degree-of-freedom svstem
was examuined by Caravami and Thomson (1973). Thev de-
termined the mean and standard deviation of the response by
using a lineanization techmque and a Monte Carlo simulation
They pointed out that an accurate estimaic of the damping
coefficients for lightly damped svstems. 1n the neighborhood of
a natural frequency. is very important in determirung the mean
and standard deviation of the system response.

The means and variances of the frequency response func-
tions of a disordered penodic beam were studied by Yang and
Lin (1975). Two types of exaitation were constdered. These were
a concentrated force (or moment) and a distributed force con-
vected at a constant velocity. It was shown that the magnitude
of the statstical average of the frequency response function can
be considerably greater than the value computed without taking
into account the random variation in the span lengths. In the
neighborhood of resonance frequencies the standard deviation
of the frequency response function becomes quute large. indi-
cating greater uncertainty in such regions. In the case of con-
vected loading the use of a perfect periodic model cannot
account for the response in certain vibration modes while these
modes can be induces in 2 disordered periodic beam.

&1.2. Mistuned bladed divks
It has been indicated in section 3.3.3 that the mistuning of
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opposite to the directon of disk rotation s as 10 appear
statonary to a fixed observer) An :nteresting and mportant
structural phenomenon resulting from mustuning s the spiitting
of a bladed disk’s diametral modes of vibration imodes havine
1.2. . nodal diameters) into “twin” or “dual” modes The
presence of dual modes charactenstes in g bladed disk wan
significanthy atfect either or both of 1ty aeroelastic stabiliny ung
resonant response charactensucs Whitehead (1966) howed
that there 1» an upper himut to the effect of mistumng and -
given approximately by the factor of (1 - Vy 2 where Vv < the
number of blades in the row This upper limit was obrained
under the assumption that the damping forces are substantially
less than the aerodvnamic couphing forces Jav and Burns
(1984) conducted a senes of rotating and unrotaung test o
identfy mistuning, damping. split factors for vanous diametral
patterns and dvnamic strains signatures from resonant tests o
a shrouded fan blade disk. Svstem mode responses to varous
distortion patterns were found 1o involve standing waves and
traveiing waves

A number of lumped mass models of bladed disk assemblies
have also been used 10 study the effects of vanous hlade
mistune distnbutions on the maximum resonant response of the
blades iWagner. 1967. Dve and Henrv. 1969: El-Bavoum and
Srmvasan. 1975. MacBain and Whalev. 1984) The nature of
the lumped parameter models used 1n these studies s such that
individual blade response was studied in terms of wingle- or
two-degree-of-freedom blade modes whose vibrators response
was altered by mechamcal coupling via the disk portion of the
models. Hence. the basis or starting point for these lumped
mass models was the indinndual blade resonant frequencies The
results showed how much greater or smaller the individual
blade response would be for a set of mistuned blades compared
to the response of a tuned set of blades. For a given mistuming
distnbution and excitatica. the response of the mistuned vet of
hlades was found to be manv times greater or smaller (de-

turbomachinery bladed disks could have beneficial effect in the
case of blade Autter. However. the effect is reversed in the case
of forced vibration (Whitehead, 1966; Ewins. 1969: Stange and
MacBain. 1983). It is believed that Tobias and Amold (1957
have made the first attempt to understand the effect of blade

ing on the resp of stationary waves (modes traveling

pending upon the disk circumferential location) than the re-
sponse of tuned blades. Ewins and Han (1984) conducted a
sereis of case studies to examine the influence of various param-
eters on the resonant response levels of individual blades on a
disk. They found. for the case of a 33-bladed disk. that mistun-
ing always increases the highest resonant response level from
that experienced by a tuned system but while some blades are
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more hughly stressed, others suffered a lower level and the meap
value 1s roughly constant. [t was also concluded that the highest
response 1s always expenenced by a blade of extreme mustune

Analytical invesugauons of mistuning fall into three cate-
gories (Griffin and Hoosac, 1984): determumsuc (Dye and
Henery. 1969: Ewins, 1973, El-Bayoumy and Srinivasan. 1975).
staustical (Huang, 1982). and combined and staustical ap-
proaches (Sogliero and Srinivasan, 1980: Kazan and Kielb.
1982 Muszynska et al, 1981). Basu and Gnffin (1986} used a
determnistic /statistical approach and developed a model in-
volving acrodynamic and structural interaction for studying the
effect of mistunung on bladed disk vibration. They found that
the mistuning cffect significantly decreases as the density of the
gas flowing through the turbine is decreased. On the other hand
the effect was found to increase linearly with the number of
blades on the disk. :

4.2. Stochastic finite element methods

Recent developments of stochastc fimte element methods
have promoted the analysis of structural dvnamics with uncer-
tain parameters. These techmques could be broadly classified
nto al and nc al (Liu et al, 1985b). The statisu-
cal approach 1s based on numencal simulation via Monte Carlo.
straufied sampling, and Laun Hypercube sampling. A compara-
uve discussion of these techniques s provided by
Mckay et al (1979). All simulation methods require that the
joint probability distributions of the exatation and random
parameters be available. However. these distnbutions are sel-
dom to be available. Instead. one usually may assume that the
input random variables are mutually independent and Gaus-
sian. If these random inputs are non-Gaussian distributed, one
may use the Rosenblatt (1952) transformation to transform
non-Gaussian correlated vanables 1o Gaussian uncorrelated
ones. Nonstatistical approaches include numerical integration
(Liu et al. 1985a, 1986), second moment analvsis (Cornell 1972)
and stochastic finite element methods (Nakagini et al. 1984: L
et al. 1985a,b; Hisada and Nakagin. 1982: Hisada et al. 1983)
A major advantage of these methods is that the muluvanate
distribution functions are not required but only the first two
moments. Recently several stochastic finite element approaches
have been developed by Vanmarcke and Grigonu (1983). Liu
et al (1985a.b), Dias and Nagtegaal (1985), and Mon and
Ukai (1986). Linear problems in structural mechamcs with
uncertain parameters have been solved by second-moment
analysis (Contreras, 1980: Nakagiri et al, 1984).

Astill et al (1972) examined the problem of impact loading
of structures with random geometric and matenal properties
Their approach is a combination of finite e} method and a
Monte Carlo simulation. For the case of an axisvinmetric
concrete cylinder they assumed spatial distributions of Young's
modulus and density for each realization of the test cvlinder.
Each test cylinder was subjected to the same axial impact
loading. The algorithm gave a sample of 100 maximum stress
intensities {rom which the ple mean and dard deviation
were computed. For a certain intermediate location of the test
cylinder it was found that the axial stress is always different
from the corresponding stress in a uniform cylinder.

Vanmarcke and Grigoriu (1983) developed a stochastc finite
element analysis for solving first- and second-order statistics of
the deflection of structural members whose properties vary
randomly along their axis. The covariance matrix of these
element averages was obtained by simple algebraic operations
on the vaniance function which in turn depends primaniiy on the
scale fluctuation. Although this approach was used to determine
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Grigonu claimed that it can be appled w determine the re-
sponse stausucs to external dynamic excitauons even when the
stansucal information about spaual vanauon of matenal prop-
erues 1s limited. Recently Liu et al (1985a.b. 19K6) developed 4
number of probabilisuc finute elements methods for nonlinear
structural dvnamics. These methods are apphcable for corre-
lated and uncorrelated discrete random vanables For ciastc
plastic bar with end load. thev (Liu et al, 19¥5b) computed the
mean and vanance of the displacement at the {ree end by umng
the probabilistic fiute element and Monte Carlo simulation
The solutions of the two methods compared very well. however
the probabilistic finite element approach required much less
computer ume than the Monte Carlo simulation. Unfortunately
these results did not refiect the influence of parameter uncer
tainues on the random response

The dvnamic response of random parametered structures
under random excitation has been examined in a number of
studies by Paez and tus group (Chang, 1985, Bennett, [y«
Branstetter and Paez. 1986). These studies provide vomputer
programs in a fimte element framework to establish response
moments on a step-by-step basis These numencal algonthme
evaluate the svstem response characteristics at an advance ume
by using the statistical informauon about response structural
charactenstics. and excitation at a previous me Branstetter
and Paez (1986) examuned their computer programs {or severai
damped single degree-of-freedom svstems and several un-
damped two degree-of-[reedom svstems. The responses of these
systems to white notse excitations were obtained (or random
stffness parameters while all other svstem parameters were
fixed It was shown that single-degree-of-freedom swstems dus-
play greater response vanance than svstems with deterministic
suffness. The difference 1n response vanance s found to be
small when the structure imtial conditions are zero The dif-
ference 1ncreases and assumes an oscillatory character when the
imual conditions depart from zero The mean response 1 non-
zero for structures with nonzero imual conditions and  or non-
zero mean load

Bennett (1985) considered uncertainties (n the suffness und
damping of single- and multi-degree-of-freedom structural «--
tems The random varables of the svstem parameters were
replaced by a determirustic component tequal to the mean of
the onginal random vanable) and a random component «th
zero mean and with vanance equal to that of the onginal
random vanable For a single-degree-of-freedom svstem
Bennett found that the value of the peak responsc increases
monotomically with the standard deviation of the «uffness For
lightly damped systems which do not have zero mean. the
effects of the damping randomness on the response are less
pronounced than those obtained when the stifiness was random
The standard deviation of the response at the time of peak
response was found to increase with the correlation hetween the
stiffness and damping.

5. DESIGN OPTIMIZATION AND RELIABILITY

S.1. Relinbility-based design

The study of response of disordered svstems is verv im-
portant for design purposes These responses can help the
designer to establish acceptable tolerances on svstem compo-
nents. The masn probiem which concerns the designer is how to
govern the fluctuations of the system parameters for safe oper-
ations. For exampie when the values of the clastic displacement
of a structure are significant, the problem is 10 set up an

d

the free end deflection of clastc s. V. ke and

op d of manufacturing the structure components
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Here the permissible fluctuation 1 the structure parameters
becomes a restnctive condition. Generally, design opumzauon
of structures subject 10 reliability requirements 15 regarded as
the ulumate goal of any design procedure. The basic approach
in most reliabilitv-based structural optimzation s to tmpose a
set of constraints on overall system reliability or probability of
faslure (Ang and Tang, 1975. 1984: Moses. 1973; Parmu and
Cohn. 1978). Another approach suggests to munumize the total
cost or weight for a specified allowable overall {ailure probabil-
1tv (Frangopol. 1984a: Hilton. 1960: Moses and Kinser, 1967)

One of the main objectives of the designer 1s 1o establish an
acceptable probability of failure. Several procedures for the
analysis of probability of failure of structures have been devel-
oped (Frangopol. 1984a b, 1985a.b: Frangopol and Nakib.
1986; Kam, 1986. Moses, 1974; Moses and Kinser. 1967. Moses
and Stevenson. 1970). In order to establish a probabihity of
failure consider a structural system subjected to a number of
external loads. The structure is said to survive if the apphed
stress o, 10 the built-in section due 10 all external loads s
smaller than an ultimate limit stress o

9,50 139)

The equalitv sign in ¢q. (39) corresponds to the state of the
collapse threshold of the structure. In general. for each limu
state, 1t 1s possible to establish a cnucal inequality simular to ¢q
39) and identify. in the space of the relevant parameters. a
“safe region % (or success region)”, where the critcal in-
equahity holds. and unsafe region # (or failure regron). where 1t
does not hold. These regions are shown 1n Figure %a) according
to August et al (1984), where

S=o, and R=o (an

In most cases the applied load S = S(/) is a random provess.
while the resistance R, which is cakculated or measured. i» 4
random vanable. For each actual structure. the resistance takes
up a constant value R, although uncertain. and the representa-
tve pont ( R, S) moves in ume up and down the soiid hine in
Figure %a). Figure %b) shows a possible realization of the
random loading process S'(¢). The limit state 1s attaned when
Sty violates the threshold R, The ume to failure ¢, can he
used as a measure of the structure rehability Alternauvelyv. one
can consider a ume interval (0. () and then check the cnucal
inequality in the worst possible condition. This can be for-
mulated in probabilistic terms by stating that the probability of
failure P, and the complementary probabulity of success (reli-
ability) r = P coincide respectively with the probability that
the cntical inequality 1s violated at least once in the interval
10. 1) In space random vanabies. the probability that a point
Q. which represents the significant 1aput and sysiem parame-
ters, falls either in the failure region & or in the success region
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& Svmbolically. these states are
P, =Prob{QcF]|. and P, =ProblQc¥]| 4}

Among the basic formulations of reliability calculations are
the level 1 and level 2 approaches. In level [ one simpiv applies
the characteristic safety factor y = R. S In level 2 ooe needs 1o
determune a reliability index B wiuch measures. i units of
standard deviation, the distance between the average point and
the boundary of failure region. Thus means that larger values of
8 1mply smaller probability of faiure. The probabiiity of failure
is found (August et al. 1984) to be less dependent on the
coeflicient fo vanauon § = a( S E{ 5] of external excitation
the corresponding coefficient of resistance 8, =ot Ry LR &
relatuvely large. where 8(S) and 8( R) are the standard devia-
tions of the applied stress and the resisung stress. respectivels
Level 2 reliability methods include the esimaton of the
mimimum distance 8 which 1s regarded as a safety measure ot
the smallest distance of the surface separating thic safe und
unsafe regions from the ongin a the space of random vun
ables @

Generally the level of performance of anv sructural svstem
depends on the properties of the svstem Thus. it 1s possihic
charactenze a function g(()) known as the performance tun.
tuon such that

RUQ)Y » 1) = the sale state. and o

g{ Q) < 0 = the faslure «tate -
Geometncally the hmit-siate equation g() = 1 iy un n-dimen
wional surface that 1s referred to as the “faure surface 7 The
performance funcuon vould be hinear or nonlinear The evalug-
non of the exact probabilits of safety for nonhnar performance
function 1s generally involved and the determination of the
required rehability index would not be as simple as in the hncar
performance funcuion (Ang and Tang. 1984) For correlated
non-Craussian random vanables. the safetv index may be
evaluated 1n terms of another set of independent Gaussian
vanables through the Rosenblatt transformation (1952)

. Hohenbichler and Rackwitz 11981) developed an algorithm to

determine the salety index by using the Rosenblatt transforma
tion

Tanaka and Onishi (1980) developed a method of reguiating
the deviations of random parameters and denved a restnictive
conditional formula in terms of the permissible displacement
(or natural frequency) fluctuation. The method 18 based on the
linear deviation analysis with parual differential analvais to-
gether with sequenual linear programmung (SLP) for 4 number
of restnctive conditons. Tanaka et al (1982) treated the optimi-
zation problem of the allowable vanance of random parameters
by using a perturbation method and Monte Carlo yimulation
Thev computed the deviauon of the steadv state response of
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FIG. 9 (a) Safe and unsafe regions for (b) reahization of Str) (August et al. 1984)
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structural systems iavolving random parameters with the pur-
pose of regulaung the deviation of the random parameters when
the deviation of the response 15 specified.

The techrques of mathemaucal programmng have been
extensively used to minimum-weight design of deterministic
structures subject to constraints on stresses. displacements. ds-
namic response, and stiffness (Moses and Kinser. 1967): Moses
and Stevenson, 1970: Moses 1973, 1974). The stochastic pro-
gramming of dynamically loaded structures was developed
originally by Charnes and Cooper (1959) and 1s well docu-
mented by Rao (1979). The basic idea of thus method 1s 1o
convert the probabilistic problem into an equivalent determinus-
tic one by minimizing the expected value of the objective
funcuion subject to certain constraints. Davidson et al (1977)
applied the mathematical programming techniques for optim-
zation of structures subject to reliability requirements. Ther
work resulted in a general formulation of the munmimum-weight
opumization for indeterminate structures with random parame-
ters. Jozwiak (1985, 1986) applied the stochastic programming
based on expected values in the problem of optimizatnon of
dvnamically loaded structures with random parameters The
mean values of joint displacements and their denvatives were
determined by solving the equauons of moton of the structure
under the constraints of minimum weight.

Other techniques such as multi-objecuve optimization meth-
ods (Rao, 1982, 1984; and Schy and Giesv. 1981) and fuzzy sets
(Zadeh 1965, 1973; Brown, 1980: Brown et al. 1983) have been
employed to the design of simple structural elements and
aeroplane control svstems involving uncertain parameters and
stochastic processes. The basic idea in multi-objective design 1s
to include all important objectives in a vector obyective func-
uon. The problem of optimizing structural svsiems involving
dynamic restrictions, random parameters, stochastic processes.
and multi-objectives has been outlined by Rao (1982). By
considening the imprecision of the restricitons such as use.
design. construction. onc may assume that. some of the con-
straints and goals for each of the objective functions are fuzzy
or imprecise in multi-objective fuzzy optimization design. If the
corresponding expectation functions for objective and admus-
sion for constraint are introduced it is possible to quantify the
fuzzy objectives and constraints. Guangwu and Sumng (19%6)
employed the concept of multi-objective fuzzy design optimiza-
tion for ship grillage structures.

5.2. Design itivity to p vari

5.21. Basic ept of semsitioh lysé

The sensitivity of a structural svstem to vanations of its
parameters is one of the basic aspects in the design of struc-
tures. The sensitivity theory is a mathematical problem which
investigates the change in the system behavior due to parameter
variations. The basic concepts of semsitvity theorv are well
documented in several books. see. eg, Frank (1978). The sensi-
tivity problem can be stated by defining the actual svstem
parameters represented by the vector a = {a,. a-,.. ., a, )’
which differ from the nominal value a, by a deviation Ja.
These parameters are related to a certain vector x which char-
acterizes the dynamic behavior of the system. In structural
dynamics the vector x can be taken as the system response
vector. The mathematical model of the systemn response can be
written in terms of the first order differential equations

{x} = {/(x.a.1.F)}. {x(ts)} = {x"}. (43)

where F represents the input vector.
Generaily a unique relationship between the parameter vec-
tor and the response vector is assumed. However, this is not
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possible 1n real problems because they cannot be denutied
exactly. It 1s a common pracuce in sensitivity theon to define 4
sensttivtry function S which relates the clements of the set of the
parameter deviauons da to the elements of the set of the
parameter-induces errors of the svstem function 3x by the
linear relationship

dx =S8(a,)da (4

Thus relation 1s a linear approxumauon of eq. (431 and 1 vaiid
oaly for small parameter vanations. ie. (38 < a1 S 4
matrix function known as the trajectory sensitivity matnx which
can be established cither by a Taylor senes expansion or by
partial differenuation of the state equation with respect to the
system nomunal parameters.

When the system 1s random. the function 8§ 1» referred to as
stochastic sensitivity function. Szopa (1984) developed equa-
uons for stochasuc sensiuvity funcuons to determine the in-
fluence of changes in the iutial conditions on the response
These functions were aplied to a stochasuc nonlinear oscillator
with a limt cycle. It was found that the mean values and the
vaniances of the stochasuc sensitivity functions converge to
zero. Szopa (1986} used the sensiuvity theory to invesugate the
influence of changes in system parameters on solutions of
dvnamical systems. The staustics of the stochasuic sensitivaty
functions were found to have fiate values when the response
exhibit chaotic characteristics.

5.22 Design derivatives

Consider the eigenvalue problem given by eq. (151 It wiil be
assumed that the eigenvalues A, of the system matnx A are
disunct. The clements of A are function of the svstem parame-
ters a. The sensitivity of the free vibration  the structure as
well as the sensitivity of its relative stability with respect o am
parameter of A can be characterized by the sensitivity of the
eigenvalues A with respect to the parameters.

The parual derivative

S =9dA /da,, (45)

1s known as the eigenvalue sensitivity or the eigenvalue denva-
tve.

The eigenvector sensitivity (or denvativey of the system
matrix is also given by the partial differentianon

S} =dx da, (46)

The eigenvalue sensitvity has been examined mathemat-
cally by McCallev (1960). Mantey (1968). and Reddv (1969
Frank (1978) developed a number of formulae to determine the
eigenvalue sensitivity The denvauves of the eigenvalues and
eigenvectors are very helpful in design opumizauon of struc-
tures under dvnamic response restrictions. They have been
extensively used 1n studving vibratory systems with svmmetnc
mass, damping, and stiffness properues (Fox and Kapoor. 1968
Kiefling, 1970) and in nonseif-adjoint systems (Rogers. 1970:
Plaut and Husevin, 1973; Rudisill. 1974). For distributed
parameter sysmns. design denvatives of eigenvaiues were first
enc d in ¢ n studies by Haug and Rousseler
(1980) and Reiss (1986) Reiss used a relativelv simple method
to determine explicit resuits for the design denvauves of eigen-
values and ecigenvectors. He expressed seif-adjoint operator
equations in terms of integral form by using Green's function
(Reiss, 1983). Recently Kuo and Wada (1986) developed the
nonlinear sensitivity coefficients and correction terms. usualiv
eliminated during the linearization process in the Tavior expan-
sion. The nonlinear correction terms were found sigmificant 1n
problems involving many finite element analyses where the uize
of the eigenmatrix is of order 10E06 and the difference in the
eigenvectors may be of order 0.01
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Lund (1979) developed a method to calculate the sensitivity
of cnitical speeds of a conservauive rotor to changes in the
design using a state vector-transfer matrix formulauon Frizen
and Nordman (1983) have developed the ¢igenvalue and eigen.
vector denvatives for general vibratory system (with nonsvm-
metric system matrices) and used them in evaluating stability
behavior due to parameter changes in rotor dvnamics. Palazzolo
et al (1983) presented a generalized receptance approach for
eigensolution reanalysis of rotor dvnamic svstems. Their method
has the advantage of accomodating system modificaion of arbi-
trary magnitude and treats the modifications simultaneouslv
Rajan et al (1986) developed the eigenvalue denvatives for the
damped natural frequencies of whirl of generai linear rotor
svstems modeled by finite element discretization. For under-
damped modes. the eigenvalue derivative is complex. The real
part represents the damping sensitivity coefficient while the
1maginary part gives the whirl speed sensitivity. Rajan et al
showed that the combination of design parameter and whirl
frequency sensitivitv coefficients may be used to evaluate the
Jamped cnucal speed sensitiity coefficients.

In reliability-based design optimization it 1s useful to ex-
amine the results to sensitivity analysis in order to determune
the influence of the statistical parameters on the optimum
soluttons. The essenual objectives of sensitivity analvsis of any
svstem is to establish a measure of the wav each response
quanuty vanes with changes in the parameters that define the
svstem (Grierson, 1983). Recentlv. Arora and Haug (1979 and
Frangopol (1985a) have developed a techruque for determiming
the reliability-based optimum design sensitivity of redundant
ductile structures, Frangopol investigated the sensitivity of an
optimum design to changes in the statistical parameters that
define the loading and resistance strength of the structure

6. EXPERIMENTAL RESULTS

The first attempt 10 measure the stapstcs of structural
modal frequencies is believed to be made by Mok and Murray
(1965). Thev carried out a senes of free flexural vibration tests
of a bar with a stepped profile and a maxumum vanauon in the
cross section of 50%. The predicted and measured results were
found very close. Twenty vears later. Paez et al (1985, 1986y
conducted a senies of experimental irvestgations to measure the
random vanation of the natural frequency of a canuilever beam
One end of the beam was mounted on a fixture through a screw
and two washers. and the other end carnes a concentrated
mass. The torque in the screw establishes a preload which
governs the suffness of the beam at the fixture. Paez et al
conducted 19 expenments each with different values of base
torque and stiffness. The variation of the fundamental (requency
with the base stuffness was obtained experimentally and numen-
cally (by using a finite element program). It was shown that the
standard deviation of modai frequency increases with the mean
modal frequency. Another interesting feature observed bv Paez
et al was that the magnitude of random vanation in modal
frequency can become greater than the spacing between modal
frequencies as the frequency order increases.

The phenomenon of normal mode localization was first
examined experimentally by Hodges and Woodhouse (1983).
Their model was a thin high-tensile steel wire stretched between
two supports. Seven small lead weights were securely attached
initially at equal lengths and then were shifted slightly to give a
controlled amount of irregularity. Under a step function force
with repeatable amplitude the string motion was observed and
measurements were taken for the energy transmission from end
to end of the string. Levels of energy attenuation in the dis-
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ordered case were found 1n some cases quite large (99% ) with
only 2.4% standard deviation 1n the mass positions

Pierre et al 11986) conducted an expenmental investization
to venfy the existence of localized modes for two disordered
two-span beams shown in Figure 7 The beam was pinned at
both ends while the third support with vanable torsional ~uil-
ness was located near the mid-span. This middle support can he
moved to vanous locations. A pure excitanon torque Was Jap-
plied to the specimen beam near its intermediate upport
Figure 10 shows the companson hetween theoreucal and cxpen-
mental natural frequencies of the first two modes versus mistun-
ing parameter 8/ = A/, [, where { is the length of the beam. and
4/ 15 the vananon from the middle of the beam. The coupling
parameter ¢ = 2k, /s EI. where k, s the stifiness of the tor-
sional spring, £ and / are the Young's modulus and the area
moment of inertia of the beam. respectivelv. The degree of
localizauon of a mode is expressed by the ratio 4 =4 4
which represents the peak deflection in one span to the peak
deflection in the other span, such that the numerator of this
ratio corresponds to the span with smaller peak deflection Thas
peak rauo 1s shown in Figure 11 for the two modes for two
ditferent values of torsional spring constant ¢ The mode shapes
of tuned and mistuned beams are shown in Figure 12 11 was
reported that for /= 2% and ¢ = 281.8. the first mode of the
mistuned beam 15 stronglv localized 1n the vecond span. whereas
the one of the tuned beam 1s coilective, that 1« the peak
deflection is the same 1n both spans.

A comprehensive expenmental and theoretical investigations
were conducted by Ewins (1976) to determune the effects of
turbomachinery blades mustumng. His hladed disk testprece
model consists of 24 blades. A provision for adjusting the tune
of each blade individually was accomplshed by adding a num-
ber of washers to a nut and bolt attached near the up of cach
blade The test piece was excited by placing an electromarhet
close to 1ts surface and passing an altemating current through
the magnet. The response of the bladed disk was detected by a
set of strain gages fixed near the root of each blade. The natural
frequencies were then measured by adjusting the frequency of
the magnet so as to produce a large response in the strain gage
nutputs. The shape of each mode was determined by examina-
tion of the relative amplitudes of all the blades It was observed
that there was a distinct, though compiex, pattern linking the
basic (tuned) mode shape with the mistuned mode shape and
the mistuned pattern. particularly for the lower diametral modes
Jay and Burns (1986) conducted a senes of rotating and non-
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A T T T T Y T T rotating tests to identify individual blade frequencies. mode
1.0 _]  shapes. mistuning, damping, and split factors for diametral
(a) A Theoretical patterns of the 3. 4. 5. and 6 diametral mode famulies. The tirst
o Experimental harmonic of the normalized axial velocity deficit at the proper
0.5 L Second mode _|  mass flow rate was used to construct a gust perturbation velo-

ity. These spanwise gust perturbation velocities multiplied
the product of the density and the relative velocity squared
results in the normalized force parameter. It was found that uny
increase in the perturbation force parameter results in an :n-
crease in the dvnamic stress in the bladed disk. In addiuon the
perturbation parameter does account for the interaction be-
tween the wake and modal response of the svstem as they are
changed by aerodynamic ioading.

First mode

1 Il 1 —_—
7. CONCLUSIONS
i R T
A Theoretical J Several problems in structural dvnamics involhving parameter

> Experimental uncertainties have been treated in the literature. These problems
include the random eigenvalue of disordered svstems. normal
mode localization, random response. design opumization. and
- reliability. The mathematcal theorv of the random c1genvaluc
has reached the maturity stage, however, this theorv has not
been fully implemented 10 treat real engineening problems It i\
+ —a_| observed that some progress has been made towards the devel-
opment of numenrical algorithms such as stochasuc fingte ele-
ment methods and Monte Carlo simulauons to determine the
response of structural elements. These developments have pro-

First mode

-0.5 = moted the investigauon of several problems inciuding mistuned
turbomachinery bladed disks. reliabilitv-based desizn and Jo-
nvatves of eigenvalues in design optimizauon. Few attempts

1.0 L 1 L L L 1 | have been made to emplov new approaches such as mulu-

0.0 0.02 0.06 0.06 :I  vhjective optimization and fuzzy sets m design opumization

problems. It 1s believed that these techmiques will have new

FIG. 11. Comparison of experimental and theoretcal peak ratio 4 research avenues in manyv design probiems Another arca 1

of the first two modes for ta ¢ = 904, by, = 281 8 (Prerre et al. 1986 potential future research 15 the optimum design sensitivns in
reliabilitv-based design under multlevel rebatbility constramis

to evaluate the significance of vanous uncertamnties and ap-

proxumauons on the opumum solutions

The problems treated :n the literature have been restricted

within the framework of the hinear theonn The himitations of

the hinear formulation need to be detined to provide the struc

tuned tural dvnamcist the influence of nonlineanties as 4 ource ot

uncertainty - Future studies should tnclude the :nftuence of
/’/"-\\ 2eometnc and matenal nonhincanues Expenmental ‘nvesiiga
tsons gare dalso sen cmportant to examine the nfluence 1
A W parameter uncertaunties »f composite  ructures on therr Gy
namic performance
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INTERACTION UNDER RANDOM EXCITATION
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ARSTRACT

The paper presents cthe resulcs of an experimental
investigation of random excitation of a nonlinear
two-degres-of-freedom structursl model. The model
normal mode frequencies are adjusted to have the
ratio of 2 to 1. This ratio meets the condition of
internal resonance of the analytical model. Whan
the first normal mode is externally excited by s
band limited random excicacion, the system wmean
square response is found to be linearly propor-
tional to the excitation spectral density up to a
certain level above which the two normal modes
exhibit discontinuity governed mainly by the inter-
nal detuning parameter and the systes damping
ratio. The results are completsly different when
the second normal mods {s externally excited. For
ssall levels of excitation spectral density the
response is dominated by the second normal wmode.
For higher levels of excitation spectral density
the first normal sode attends and interacts with
the sscond normal mode in & form of energy
exchange. A number of deviations from theoretical
results are observed and discussed.

L. _INTRODUCTION

The last two decades have witnessed an increasing
interest in the atudy of dynamic behavior of nom-
linear systems under deterministic and random exci-

cacions. Under certain conditions these systems mey.

experience complex response charscteristics such as
jump phencmenon. 1limit cycles, internal resonsnce,
saturation phenomenon, and chaotic motion. These
nonllq:sr phenomenas have been p“‘if&“ theoreti-
cally’ “and obsarved experimentally under harmo-
nic excitations. However, wmost of the predicted
random response charscteristics, includ ng response
stochastic stability and statistics.’*® have mnot
been verified experimentally. Very few experimental
investigations of random vibration of noniinear
systeas have been reported in the literature.’ The
lack of experimental verificationa say be due to
several reasons. These include difficulties in
generating the same properties of the random exci-
tation as represented theoretically, and the limi-
tations 90! sxperimental squipment. Racently,
Bolotin” discussed s number of experimental aifff-
culties encountered in experimentsl msasuremencs of
stochastic stability of parametric excited systess.

In deterministic nonlinear vibrations: the amspli-
tude jump, limic cycles, and paraserric instability
are common features of nonlinesr single- and multi-
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degree-of - freadom systems. Parametric instability
takes place vhen the extermal sxcitation appesrs as
a coefficient {n che homogeneous parr of the equa-
tion of wmotion. It occurs when the excitation
frequency is twice (or multiple) of the system
natural frequancy. Intarnal resonance and satura-
tion phenomenon may occur only in nonlinear systems
vith more than one degres-of-freedom Internal
resonance implies the existence of a linear rela-
tionship betweaen che systes nacural frequenciss and
causes nonlinear normal wmode intersction in the
form of ensrgy exchange. Under external harmonic
sxcitation, the modes which {s directly exciced.
exhibits in the beginning. the same fearures of a
single-degres-of freedom system response and all
other modes remain dorwant. As the excitation
amplicude reaches a cercain cricical level. the
other modes becoms unstable and the originally
excited mode reaches an upper bound. In this case.
the w®mode 1s said to be saturated end energy is
transferred into aocher msodes. This interesting
phenomenon takes place only in systems with quadra-
tic nonlinear coupling which resules in & third
order internal resonance.

Under desterministic unsteady aerodynamic forces.
wost nonlinear characteristica can be predicted by
one of the standard techniques of nonlinsar diffe-
rential equations. However, aerospace structures
are usually subjected to turbulent air flow. and
the aerocelaatician {s confronted with aserodynamic
loads which are random in nature. These lnads vary
in a highly irregular fashion and can be described
in terms of statistical quantities such as means.
®ean squares, autocorrelation functions am{oqnc-
tral density funcump, ulbnhu and Roberts ~°*

and Ibrahim and Heo "“’"“considared nonlinear two
degree-of-freedom structural systems and spplied
Gaussfan and non-Gauseisan closure techniques to
predict the response statistics snd response sto-
chastic stability. These studies revealed that a
system with i{nternal resonancs say sxpevience non-
linear characteristics such as sutoparsmetric in-

teraction. lobcrcll‘ conducted a ssxies of expe-
risental tests to seasure ths mean squars stability
boundaries of s unimodal response of a coupled two-
degree-of-freedom system. Roberts reported & num-
ber of difficulties in seasuring the stability
bounaaxies. dased on the authors experience and
other investigators work, it {s understood that
experimental investigaction of nonlinear random
vibration is not & simple task and requires careful
planning and adva.ced equipment preparations.

The purpose of the present psper is to report the
results of an experimental investigation to mea-
sure the response mean squares of a nonlinear two
degree.of-freedon  structural wmodal under band
limited random excitation. The same 1 was ana-
lytically exsmined by Heddow, et al’ under harmo-
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nic excitation, and by Ibrahim snd Heo!Z: !} under
vide band random sxcitstion. Agreements and disag-
reements with theoretical predictions wil) be dis-
cussed together with recommendations for future
axperimental work.

L1 ABALYTICAL BACKGROUND

The random response of a two degree-of-freedos
elascic structure has been determined snalytically
in rceferences [12.13) The snalytical model shown
in fig. (1) consists of two besms with end masses
Under vartical support motion {(t) the response of
the two beams {s mainly governed by linear dynamic
and paramectric couplings. However, 1Lf the system
is designed such that the first two normal wmode
frequencies w, and ., satisfy the {nternal reso-
nance conditidn w9 % 20w, . the nonlinear {nertis
forces becoms dominant and the systea dynamic res-
ponse deviaces from the linear response In terms
of the non-dimensional normal coordinates Y the
system equations of motion are: -

(LLY*) + (2)0Y) » (£2]0Y) =

ST(r)ia) ¢ g () (DY) + iy (@9

where a prims denotes differentiation vith raspect
to the nondimensionsl cime paramecer v = .t, and the
coordinates { are related to the dlnml&nl normal
coordinates y by the relation (Y Yi1 = ly .y, 1/q5 .
q* is taken as the response root mesn square df t}u
s$stem vhen tha length of the vertical beam shrinks
to zerc. 1.e. the response root mean square of the
sain beam with end mass (m, ). The elements of
the vector {a) and matrix [b] are constants depen .
ding on the systes propgrties. The small parameter
¢» q*/¢, . The macrix {r*| (s diagonal with slements
1and (b /w )2. The vector [ ¢ | contains all quad-
ratic nofilihear terms vhich encompasses two groups
aonlinear terms of the same mode and autoparasetric
terms of the type YLY-‘ It is the autoparasetric
coupling which gives hu to the (nternal resonance
condition r = ""2/“1 -2 )

The random acceleration 7YT) wes sssumed co be
Caussian wide band process with zero mean and &
smooth spectral densicy 2D up to some frequancy
higher than any characteristic frequency of the
system. The acceleration terms in the nonlinear
functions ¢ ware removed by successive elimina-
cion and the system equationa of wotion was tram-
sformed into a Markov vector via the coordinates
cransformation

(Yl.Y .Yi.YZ) - le. X,. X,. X (€3]

2 72" 73 “

A set of first order differential equations of the
response statistical mowents were generated by
using the Fokker-Planck equacion approsch. These
equations were found to be coupled through higher
order moments and were closed via two approaches:
Gaussian snd non-Geussisn closures. These closure
techniques are based on the cumulant properties
The Gaussian closure is established by equsting all
cumulants A of order greater than two te z&ro, {.e.

k, Kk

x\z u ° " S 4
\’Z[lxz""ﬂ]- * -t.]l S

AN

NN ~

11

Fig. 11 Model of coupled twd Hcams
EIYZ iy e ———— ——— N

1 1 E[YZ‘

— . 015
2.08— =46.04

Rty B,
' I T | a
¥o.45 0.5 0.35
=17y
Fin. 12) Laussian closure solution tor

various vaiues ol nonlinear
voupling parameter -

This spprosch resulted in fourteen coupled differe-
ntial equations for firsc and second order mowents
of the response coordinaces. The numerical integ-
ration of these equations revealed that the respon-
se mean squares fluctuate between tvo limits. This
fluctuation means that the response does not
schieve a stationary state. The autoparsmetric
{nteraction took place in the neighborhood of
{nternal rasonance and vas manifested by an smergy
axchange between the sean squares of the two normsl
modes . Fizure (2), taken from refersnce 12, shows
a sample of the mean squsre response of the aystem
normal wodes against the internal detuning
paramster.

The second method takes into account the effect of
the response non-normality. As a first order non-
Geussien approxisation all cumulants of order
greater than four were equated to gero, 1.e.
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This approach resulted in 69 first order
tial equations,
order moments,

differen-

in the first through the fourth
vhich were solved numerically. The
solution reaches a stationary state after a tran-
sient period and exhibits the same nonlinear
interaction as predicted by the Gaussian closure
solucfon. Figure (3) shows the stationary msean
square response of the normsl coordinates against
the internal detuning paramerer.

Although the two approaches yislded cowson features
to those predicted by deterministic theory’ of
nonlinear vibration such as autoparsmetric sup-
pression effact. the rendom analysis 4id not verify

Fig. (&) Arrangewent of experimental equipment

the exiscence of safuracion phenomsnon. The sactu-
ration phenomenon © is & well known feature for
sulcl-degree-of-freedom systems fnvolving quadratic
nonlinear coupling subjected to harmonic forced
excitation.

It is well known that the predicted results are
approximste and their validity has not bean
examined The next section reports the measured
results of & series of experimencal rests of cthe
same ®odel under band limited random excitation

111, EXPERIMENTAL INVESTIGATION

UL L Experipencal Modal and Equipment

The wodel is siuzilar to a great
experimencal model used by Haddow, et al.’ It con-
sists of & horizontal bess of cross section of
0 111"x1 0". length 7 5. and carries a tip mass of
0 015 slug The tip mass has & provisien for
clamping the vertical besm which has cross section
0.054"x1 0O* The length of the vertical beam can
be adjusted by changing the location of its top

'“.MS to che

wags (0 0127 slug). The deflections of the two
beams are wmessured by strain gages fixed at the
root of each beam Two gages are mounted on the
horizontal beam in a two arm bridge Four gages
are mounted on the vertical besm {n a four arm

bridge The fixad end of the horizontsl beam ts
clamped by s fixture which {s bolted on the top of
the shaker armeture The shaker i{s & Caldyne modal
A88 of thrust 100 1b and provides 1" peak-to-veak
stroke The shaker {s powered by & Ling Electro-
alcs Model RA-2%0 power supply and receives a ran-
dom signal through a GenRad Type 1381 Random Nofse
generator. The random signal {s filtered to a
desired band width with a Krohn-Hite Model 3343
Variable Electric Filter. The filtered signal is
amplified via a Calex Model 176 Instrument
Amplifier Figure (&) shows a schematic disgram of
the {nstrumentation used in this investigation.
The acceleration of the shaker platform is measured
by a PCB Plezotronic Modal 302A02 shock scceleroms-
ter. The accelerometer {is powered by & PCB
Plezotronic Model 480C06 power unit.

The first two normal wode frequencies of the system
are determined theoretically and measured experime-
ntally as a function of the beams length ratio i_/
as shown in fig. (5). This figure shows that %the
internal resonance ., /., = 2 is obtained i{n two
locations of the lo“th lx-ntlo. At these mass
locations the normal wode frequencies are:

3 -
%4[——_ |
s |

1

Fig. (3) Measured snd theorctical frequency ratio
of the first two normal modes.
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i,/Ll‘0-5'52 tl - 9.1 Hz, !2 - 18.2 Kz (5a)

Lz/ll =0.707: f = 7.45Hz, f, = 16 9 Hz (Sbh)

1 2

The analog signals of the excitation and responses
are read and converted into binary numbers using a
Data Translation Model D?-3752 Intelligent Analeg
Periphersl (IAP). This AP is capable of reading
either § channels (+10v) or 16 channels (0-10v) of
input. 1t can also tead and convert analog signals
st up cto 40k points per second This unit tis
mounted {n an expansion slot of an [AM Syscem 9001
Benchtop Computer. The control and programming of
the Analog/Digital {A/D) system are accomplished
through the softvare controlled registers and field
selectable (hardware) options. The software con-
trolled registers are the control registers, status
register, and gain/channel regiscer The control
register controls the operation and mode of che A/D
systea. The modes vhich are used in this {nvestt-
gation are direct memory transfer and increment
mode operation. Direct memory transfer places
converted data direccly i{nco the memory of the
computer. The increment wmode allovs the A/D to
increment the inpuct ch 1 b tically
befores each A/D conversion. This allows dats to be
taken from sequential channels vithout requiring a
program to specify each channel. The status regis-
ter reporcs the complete status of the A/D system
during the operatiom The gain/channel register
selacts the desired channels from which the data is
to be taken and sets a programmsble gain for all
input signals. This gain is set to one for all
tests. The computer controls the DT-3752 through a
Fortran progras. Anslog signals are converted for
a specified amount of time or until the computer
memory is full. Vhen the computer has completed
collecting dats, the data is transferred to a flop-
py disk for future processing.

The daca processing is performed at equally spaced
intervals. The problem of determining this time
{nterval is well discussed in Bendat and Pisrsol !5
Generally, 1Lf sampling is prepared at points which
are too close together. ({t will yield correlated
and redundant data. This will unnecessarily in-
crease the labor and cost of calculations. Sam-
pling at points which sre too far will lead to the
problem of aliasing. The aliasing is wmainly s
confusion betwesen the low and high frequency compo-
nents in the original datas. In order to eliminate
the problem of aliasing., a sampling rate should be
chosen to be at least two time the saximm frequen-
cy that the model will experience In order to get
a good sample data, a sampling rate {s chosen which
is toughly eight times the maximum frequency In
the present investigation, the saspling rate (is
chosen to be 80 Mz per channel for the first mode
excitation and 160 Hz per channel for thea second
wode and vide bend excitatiom. Data processing
involves another problem known as quantization
which {is the conversion of data velues ac the
ssapling points into digital form. The infinite
ousber of values of the continuwous analog signel
sust be approximated by a fixed set of digital
levels. A choice between two consecutive leveis
will be required because the scale is finite. The
sccuracy of the approximating process is a function
of the svailable levels which {s depsndent upon the
snalog to digical convercer resolution. The accu-
recy of the DT-3752 1s the value of the least
significant Dbit which correspords to s volcage of

$0. 004%v. This reselution is analogous to a def-
lection of the horizontal beam beam of +0 00073-in
and the vertical of +0.00097-in and an acceleration
of +0.00044-g for the axcitation

The experimental wmodel ts tested under various
levels of excitation spectral density This {s
achieved by keeping the input signal level constant
(Master Gain om Ling Amplifier) for the range of
internal detuning of che sodel The level af
asplification (s sdjusted to five levels for tea-
ting of both the first and second normal frequsncy
bandwidths Ancther serles of tests are conducted
for excitation spectral density that covers both
nermsal wode frequencies.

11J.2 Ixpacipental Results

The experimental results inciude sasple records of
time history responses and the mean square respon:
ses in terms of generalized coordinates and normal
coordinates. The mean squars response will be rep-
resented sgainst the internal detuning parameter r
and the excitation spectral density level The
bandvidth of the random excitacion depends on the
sode under investigation

111.2.1 Firac Moda Excitation

The (first mode (s excited by & limited bandwidth
random excitation of bandwidth 5Hz and a centrsl
frequency very close to the first normal mode natu-
ral frequency. The frequency content of this ran-
dom procesa 1is selected such that {t does not
excite any higher structural modes. For the five
levels of axcication spectral density, the systen
response is governed mainly by the first mode which
does not show any nonlinear coupling. Figure (6)
shows a sample of the time history response under
excitation spectral level § = 0 0142 (g°/Hz) when
the wmodel {s internally tuned to the resonance
condition w_/w =2.0. It is seen that the response
is charactefizdd by a narrov band random process of
frequency close to the first normal mode = 7.5 Hz.

oo

° 2 . . ® m 'O

Fig. (6) Time history response of first normal mode
exciration, level V, S = 0.0142 g¥MHe.

Figure (7a) shows the wean square response of the
generalized coordinates for the same excitstion
spectral densicy level of fig. (6). The ewpty
points are sessured vhen the msss of the verticsl
bees wmoves upward while the full points are
obtsined when the mass moves downward. Both groups
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Fig. (7a) Mesn square responses of generalized
coordinates under first normal mode
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Fig (7b) Mean square response of normal
coordinates under first normal msode
excitation.

hJ
Excitation level V: § = 0 0l42 § /M2, empty points
correspond higher position of the upper msss while
full points correspond lower position

are measured {n the neighborhood of the system
internal resonance. The group of full poincs indi-
cates cthat the mean square of the horizontal bees
increases while the mean square of the vertical
bcn decreases as the normal mode frequency ractio

incresses. This imsplies that the model
bimvl. like & single degres-of-freedom system for
wgl g >> 2. For the second group of results (ewpcy
points) the mean square response of the vertical
beam increases and the mean square of the horizon-
tal beam decreases. This feature is belonging to
the charscteristics of linear vibration absorbers
due to inertis coupling. The corresponding respon-
#8 curves in normel coordinetes are shown in fig.
(7). The square points (empty or full) are belon-
ging to the first normsl mode which obviously pre-
douinates cthe response. It is also seen that as
the vertical mass soves downward, the model starts
to behave 1like a linear single degree-of-freedon
lyl;r’ whose mean square is given by the relatiom-
shi

Elyd - 0/1zs’ w?) %)

whers @, o end { are the mass, natural frequency.
snd damping ratio of the system, respectively. 2D

Fig (8a) Relationship between mean square
responses of generalized coordinates
and the excitat{on spectral density for
various valuss of internal detuning.

Fig. (8b) Relationship between mean square
responses of normal coordinates and
the excitetion spectral density for
various values of {nternal detuning.

(Measurements are taken for lower position of the
upper mass).
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is che excitation spectral densicty of a wide band
random excitation.

It is clear thar the trend of the full square
points agrees wich the linear solution (6) that the
®ean square response is inversely proportional o
the cube of the first norsal mode frequency

In order to provides more insight to the systea
response statistics. Cthe mean square rssponse is
plotted against che excitation spectral dsnsity
level as shown in fig. (B8a) for various valuss of
internal detuning. It is seen that cthe sean
squares of the two beams increase with the excita-
tion spectral density up to a certain level above
which the curves are discontinuous. The degres of
discontinuity depends on the internal decuning.
Any deviation from the exact {nternal detuning
results in & strong discontinuity This disconti-
nuity means that the system i{s unstable in the mean
square sense. Similar faatures were reported in
the deterministic cesponse of the same systea by
Haddow, et al3 The location of discontinuity is
strongly dependent on the valuss of damping ratios
and the {nternal detuning of the structure Figure
(8b) shows the sean squars response of the norsal
coordinates against the excitation spectral densi-
ty The curves have the same trend of fie (8a)

111.2.2 Second Moda Excitacion

The second norsal wods is excited by a limited band
random excitation of bandwidth 5 Kz and cencral
frequency very close to the second normal mode
frequency. Five levels of excitation !pccr.nl
density ranging froe 0.001 g“/Hz to 0.022 g“/Nz are
selected. A general featurs of the time history
response records is that both amplitudes q and q,
increase vith the levels of excitation as’ in the
firac mode excitation. The records also show that
for all selected beam length ratios and for all
levels of excitation spectral density. the vertical
besm amplituds g, is slways greater than the hori-
zontal beam amplitude . Another observation is
that vhen the excitatioh level is held constant the
amplitudes q, and % increase slightly as the beam
length ratio \ncruuL, For small levels of exci-
tation spectral density, the second normal mode is
observed to have no interaction with the first
wmode. However, above a certain level of excitation
spectral density, it is found that the first mode
appears for a certain period of time and then
disappears as the second moda takes over, and so on
as shown in fig. (%a). This nonlinear interaction
of the two normsl modes s wore clarified
in fig. (9b). Under harmonic excitation. Haddow,
ot al. reported similar anergy exchange between
the two modes. Furthermore, it was shown that the
di{rectly excited sode becomes saturated and energy
is transferred to the first mode. In the present
investigation, the energy transfer takes place not
only under high levels of excitation spectral den-
sity but also when the the internsl resonsnce 1is
approaching the value 2 as vertical beam length 1is
increasing.

The mesn square responses of the generalized and
normal coordinates are plocted againsc the internal
detuning paraseter r in figs. (10a) and (10b).
respectively. The suppression effect of the
excited wmode takes place only wvhen the vertical
sass is soved downward ss shown in fig. (10b) by
the full triangular points. The second mods wsesn
square (empty trianguler points) increases with s
corresponding decrease in the first wsode wmesn
square (as the vertical mass moves upward).
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Fig (9a) Time history response of second mode
excitacion under exgitation spectral
density of 0 022 g “/Hz
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Fig (9b) Magnification of ti{me history response of
second mode excitation showing attendance
of first normal mode
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Fig. (10a) Mean square responses of generalfized
coordinstes under second normsl mode

excitation
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Fig. (10b) Mean square responses of normal
coordinates under second normal mode
excitatiom.




(l1la) Relationship between mean square
responses of generalized coordinates and
sxcitation spectral density for various
values of internal detuning.
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Figures (lla) and (11b) show the influence of the
excitation spectral density on the normal mode
mean squars responses of the generalized and normal
coordinates, respectively. Figure (1llb) indicates
that che second normal mode mean square is relaci-
vely smallsr chan the firat normal mode mean square
response. This suppression effect is due to the
nonlinear normal mode interaction. However., the
saturation phenomenon., known in deterministic sys-
tems with quadratic nonlinearity, is not pronounced
in the present results since the excitation s a
random process which contains several frequencies
each of which may excite the two modes. In deter-
ministic excitation, the external and internal
detunings are very important in establishing the
saturation phenosenon.

1.2, TW0 MODE EXCITATION

The purpose of these tasts {s to explore the
vior of

beha-
the system under random excitation which
covers both normal mode frequencies. Due to the
shaker limitation the tests sre conducted under
single excitation spectral density level S = 0.0026
;2 Mz A sample of the time history response
record {s shown (n fig. (12) which reveals the
presence of the two sodes. The amplitude of oscil-
lation of each beam depends on the vertical mass
location which yields the same internal resonance
condition. Figures (13a) and (13b) show the depen-
dence of the mean square response on the internal
detuning in terms of generalized and noramsl coordi-
nates, respectively. The full points reveal linear
response characteristics while the empty points
shov a nonlinear interaction between the two modes.

IV, COMCLUSIONS AND DISCUSSION

The results of an experimental investigation of
nonlinear modal (interaction in a two-degree-of-
freedom structural model under random excitation
are reported. The model equations of motion in-
clude linesr and nonlinear inertia couplings of the
generalized coordinates. The normal mode frequen-
cies + and w of the model are adjusted to meet
the internal resonance condition r « 2.0. This

Fig.

(11b) Relationship between mean square
responses of normal coordinates snd
excitation spectral density for various
values of internal detuning.

(Measurements are taken for lower position of the
upper mass.)

frequency ratio is found to exist at two bean
length ratios {_ /¢ = 0.49 and 0.71. At these
locations the s¥st response characteristics are
completely different when the model i{s excited by s
band limited random excitation. Three main series
of tests are conducted to examine the system res-
ponse behsvior when the first and second modes are
axcited separately and vhen both modes are excited
simultaneously.

When the first normal wode is externally excited it
is found that the mean squares of the two modes are
increasing monotonically with excitation spectral
density. The response-excitation relationship f{s

almost linear for small excitation levels. When
the two beams are tuned to the exsct internal
T the resp -excitation relationship

follows a continuous curve.
detuning, the response curves exhibit a disconti-
muity. This festure is similar to thyp determinis-
tic characteristics of the same model.

For different internal

When the second normal mode is externmally excited,
the system response 1is dominated by the second
norsal mode up to an excitation spectral density
lavel above which the first normal mods sttends end
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Fig. (12) Tims hiscory response of two normal modes
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Fig. (13a) Mean square responses of generalized
coordinates under band-limited random
sxcitation of the two normal modes.
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Fig. (13b) Mean squars responses of normal
5 coordinates under band-limited random
excitation of the two normal modes.

[$ o= 0.0026 g2z, points notation follows fig.
(M.

the two normal modes exhibit nonlinear intersction.
Above this excitation level, the first normal wode
shows large random motion vhich results in s sup-
pression of the second wode. Tha results do not
display any evidence for the existence of satura-
tion phenmomenon. The main features of the vibration

tric absorber_effect reportsd theoreticas-
lly by Tbrahim and Beo'Z are not exactly confirmed
in the measured results. 1t is beliaved that the

deviation from theory is attributed to the fact
that the experimental excitation is a band limited
random process, vhile in theory it is represented
by a wide band random process. Another sourcs of
deviation is that the transformation into normal
coordinates 1is not exact since it does not take
into account the effect of structural damping. To
¢liminate this problem, it is convenient to adopt
other wmodels vhose generalized and normal coordi-
nates are the same. With new equipment and wmore
powerful shakers the first author {s currencly
undertaking an experimental research program
supported by the NSF.
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ABSTRACT.

This paper examines the nonlinear interaction of a three-degree-of-~freedom
structural model subjected to a wide band random excitation. The non-
linearity of the system results in different critical regions of internal
resonance which have significant effact on the response statistics. With
reference to combination internal resonance of the summed type the system
response is analyzed by using the Fokker-Planck equation approach together
with a non-Gaussian closure scheme. The non-Gaussian closure is based on
the cumulant properties of order greater than three. As a first order ap-
proximation the scheme yields 209 first order differential equations in
first through fourth order joint moments of the response coordinates. The
analysis is carried out with the aid of the computer algebra software
MACSYMA. The response statistics are determined numerically in the time and
frequency (internal detuning) domains. Contrary to the Gaussian closure
scheme the non-Gaussian closure solution yields a strictly stationary res-
ponse in addition to a number of complex responsa characteristics not pre-
viously reported in the literature of the area of nonlinear random vibra-
tion. These include multiple solutions and jump phenomena (jump and collap-
se in the response mean squares) at internal detuning slightly shifted from
the exact internal resonance condition. At exact internal resonance the
system response possesses a unique.limit cycle in a stochastic sense. The
regions of multiple solutions are defined in terms of system parameters
(damping ratios and nonlinear coupling parameter) and excitation spectral

density level.
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I. INTRODUCTION

The linear modeling of any dynamical system is commonly acceptable as long
as the actual response characteristics to various types of loading follow
the linear solution. However, under certain situations the system may expe-
rience certain complex characteristics that cannot be justified by the
linear solution. These complex response features owe their origin to the
system imherent nonlinearities. In structural dynamics the nonlinesrity may
take one of three classes [1,2]: elastic, inertia, and damping nonlineariti-
es. Elastic nonlinearity stems from nonlinear strain-displacement relations
which are inevitable. Inertia nonlinearity is derived, in Lagrangian formu-
lation, from the kinetic energy. In multi-degree-of-freedom systems the
normal modes may involve nonlinear inertia coupling which may give rise to
what are effectively parametric instability phenomena within the system.

The parametric action is not due to the external loading, as in the case of
parametric vibration, but to the motion of the system itself and, hence, is
described as autoparametric (3]. The main feature of autoparametric coup-
ling is that the motion of one normal mode gives rise to loading of other
modes through time-independent coefficients in the corresponding equation of
motion. The natural frequencies of the normal modes involved in the autopa-
rametric interaction are usually related by a linear algebraic relationship

known as "internal resonance" condition.

According to the order of nonlinear coupling the system may exhibit certain
types of-responsa phenomena [4,5]. For example, systems with quadratic
nonlinear inertia coupling may experience saturation phenomenon, amplitude
jump, nonlinear resonance absorption effect, and multi-response behavior.

For the case of two degree-of-freedom systems which possess third order
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internal resonance condition w, = Zul. it is found that if the seacond mode is
externally excited it behaves, in the beginning, like a linear single
degree-of-freedom system, and the first mode remains dormant. As the excit-
ation amplitude reaches a certain critical level the first mecde becomes
unstable, and the second mode rsaches an upper level. This mode is said to
be saturated, and energy is then transferred to the first mode. This feat-
ure has been predicted theoretically and cbserved experimentally by Haxton
and Barr (6] in their autoparametric vibration absorber; Nayfsh, et al.

and Mook, et al. (8] in ship dynamics involving nonlinear coupling between
pitching and rolling motion; and Haddow, et al. [9] in nonlinear motion of
coupled beams. For three degree-of-freedom systems possessing internal
resonance of the summed type i WY similar features were reported bv

Ibrahim and Woodall [10], Bux and Roberts [ll] and Roberts and Zhang (.l

The response behavior of nonlinear systems under harmonic excitation mayv be
changed if the excitation is a random process. The theory of nonlinear
random vibration is not well developed as its deterministic counterpart. The
theory of nonlinear random vibration requires advanced background in the
theory of random processes and stochastic differential equations [13-153].
Few attempts have been made to predict the response statistics of nonlinear
two-degree-of-freedom systems. These include the work of Ibrahim and
Roberts (16,17], Schmidt [18], and Ibrahim and Heo {19,20] who examined the
autoparametric interaction of two freedom systems subjected to wide band
random excitations. The response statistics of these systems share a number
of nonlinear characteristics of deterministic results such as nonlinear
resonance absorption effect. However, the saturation phenomenon did not
take place because the excitation contains a wide range of frequencies which

result in a continuous variation of the external detuning. Recently,
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Ibrahim and Hedayati [2]1] have examined the effect of quadr ic nonlinear
inertia coupling in a three-degree-of-freedom structure subjectad to a wide
band random excitation. They used the Fokker-Planck equation approach to-
gether with a Gaussian closure scheme. In the neighborhood of the combina-
tion intsrnal resonance condition, wy =Wt w,, the nonlinear interaction
wvas found to take place betveen the second and third normal modes at an
internal detuning parameter r = u5/ (u& + wz) = [,18. At r =1.0 all attemp-
ts converged to the linear random response statistics. The purpose of the
present paper is to employ a non-Gaussian closure scheme which take into
account the effect of the response deviation from normal distribution with
the purpose of exploring three modal nonlinear interaction. For the sake of
completeaness a brief review of the results of reference (21] will be given
in section VI. The effect of excitation spectral density level on the res-

ponse characteristics will be examined in section VII.
II. BASIC MODEL AND EQUATIONS OF MOTION

Figure 1 shows a schematic diagram of an analytical model of an aircraft
subjected to random excitation F(t). The fuselage is reprasented by the
main mass m,;, linear spring k; and dashpot cq. Attached to the main mass on
each side are two coupled beams with tip masses m; and m,, stiffnesses k,
and kz, and lengths 21 and Lz. In the analysis of the shown system only the
symmetric motions of the two sides of the model are considered. Under ran-
dom excitation the system response will be described by the generalized
coordinatss q;, q;, and qq as shown in the figure. The equations of motion

are derived by applying Lagrange'’'s equation

Fr R T R <”
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The kinetic energy T is given by the expression
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where a dot denotes differentiation with respect to time t. Neglecting the

gravitational effects, the potential energy V is given by the elastic energy
Ve 1/2(kyay % + kpap? + kqa52) (3)

Substituting for T and V in equation (1) and bypassing energy dissipation
due to damping (damping forces will be introduced later) yields the

eaquations of motion in terms of the nondimensional coordinates Ei

M1 M2 M

9 OO0y
2 - -
w By @y 0 L3 (RS L T R
my 0 333] | 93 0 0 ky|| a3
(4)

0 gt wd Y

= 11- 0 ‘_3_2:2 v

a3 i 2

F(T/uﬁ) 3

3

where q; = qi/dg. 7= mzt

qa is taken as the root-mean-squars of the main mass wvhen all other parts

are locked under forced excitation,w., is taken as the third eigenvalue of

3
the system, and
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where a prime denotes differentiation with respect to the dimensionsionless

time T.
II1I. EIGENVALUES AND MODE SHAPES

The system esigenvalues are determined from the conservative linear part of

the equations of motion

(m]{d)} + [k}{q} = {0} (6)
the characteristic equation of (6) is

Detf(k] - w’{m]| =0 ()

whers the roots of (7) give the eigenvalues w of the system.

Expanding the determinant gives the cubic equation
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where the frequency parametars ~ i1 -{::7::: are the natural frequencies of
the individual components of the model. The IMSL (International Mathemati-
cal and Statistical Library) subroutine ZPOLR (Zeros of a Polynomial with
real coefficients) is used to find the roots of equation (8). Figure (2)
shows a sample of the dependence of the natural frequency ratio r -ubl(w,*;ﬂ

. -

on the ratiocs u“/w3 and W, /w33 for beams cf length ratio l’/ll = 0,25,

3
and mass ratios mz/ml = 0.5, and m3/m1 = 5.0. The importance of these
curves is to define the critical points where the structure possesses inter-
nal combination resonance r = 1.0. It is seen that the most critical region
is located on the curves belonging to the values of . 22/~ 33 ranging from
1 to 2. For the present analysis the curve corresponding to ~22/m33 = 1.4
will be adopted. The mode shapes of the model corresponding to the three
eigenvalues which satisfy the internal resonance condition r = 1.0 are eval-
uated by the method of matrix decomposition [22] and are shown in fig. (3).

The eigenvectors of the system will be used in section IV to construct the

modal matrix (R]. i
IV. TRANSFORMATION INTO NORMAL COORDINATES

Equations (4) include linear and nonlinear dynamic coupling. It is conveni-
ent to eliminate the linear dynamic coupling by transforming equation (4)

into principal coordinates Yy, by using the transformation
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whers [R] is the modal matrix whose columns are the eigenvectors,

{R] =

1 1)
"1 ﬂz n3E
Ay My Ty

{q} = [RI{Y}

(10)

Rewriting equations (4) in terms of the principal coordinates in the matrix

form

(] (RI(Y"} + (KI(RI{Y} = (F(T)) - {v(¥,¥'.Y")}

(11)

Premultiplying equation (l1) by the transpose of the modal matrix results in

diagonalizing the mass and stiffness matrices.

involve nonlinear coupling and have the form

2
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The resulting equations
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V. DIFFERENTIAL BQUATIONS OF RESPONSE MOMENTS

The response coordinates can be approximated as a Markov vector if the ran-
dom excitation is represented by a zero mean physical white noise W(<7)

having the autocorrelation function
R (87) = E[W(T)W(T +47)] = 2Dé(aT) (1s)

where 2D is the spectral density and 4( ) is the Dirac delta function.

This modeling is justified as long as the relevant Wong-Zakai [l14] coorec-
tion term is preserved. In order to construct the responss Markov vector
the acceleration terms involved in the nonlinear functions ¥ must be removed
by successive elimination. In view of the complexity of the equations of
motion the elimination process is performed by using the symbolics manipula-

tion software MACSYMA. Equation (12) takes the new form

e 2 - - - : - « -
RAFIR I FEN APIR R P Y fiw(.) + ‘3i(¥’¥')' i 1,2,3 (15}

where linear viscous damping terms have been introduced to account for ener-

gy dissipation, and

2 € - q; /21

W, - <k11/Hli) (kl/'l)

i
H(T) - 1

AT T

T3 = o/

fi - ni’"ii

Introducing the transformation into the Markov state vector X
{Yl' Y'l' Yz. Y'z. Y}, Y':} - (Xl. XZ, X3. XA..XS, X6} (16)
equation (15) may be writtan in the standard form of Stratonovich differen-

10
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tial equation
& A
dX; = F.(X,7)dz + - Gij(§.t)d3j(t) ()

whers the white noise W(Y) has been replaced by the formal derivative of <the

Brownian motion process B(T), i.e.
W(t) = g dB(t)/dT, & = 2D

Alternatively, equation (17) may in turn be transformed into the Ito type

equation
, 6 6 3G, (X, )
dx, = [F (X,1) +~ = LGy (X, T =] dt
g T IFRED T 5 45 Gl X

6 (18)
+ I Gy4(X,7) dBy(T)
4oy 0 3
whers the double summation expression is the called the Wong-Zakai (or Itc)
correction term [14].

The system stochastic Ito equations are

dx, = xzdr. dx3 = xhdr, dxs - x6dr

1
dx., = {2 £.r..x. - ¢ zx + (2 b,E.r,.%x. + ¢ zx (L + L + L
2 1713% ~ T3 X 151%13%2 % Ty XX Lyggxg * LigyXg)

2
* (25 Earagx, * BTy X (L 0%+ Lygaxg + Lygoxe)

+ (2 b1£3x6 + ble)(LIIBxl + Lyggxq * L133x5)

2 2 2
b (e . 3 . . .
Bulm Myna%y - Mygox,” - MigaRg” - Myaxax, - Mioaxxe - M) axox 1)

2 2 2
+ *
Co4X C,a.X + CII‘XIXJ + CISXIXS + c15x3x5

*Af + e 12%3 13%s

* 7% * ©1g%y * o gRsldB
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The evolution of the probability density of the ‘oint response coordinates X

is described by the Fokker-Planck equation

ap(X, = 6 2
i(f—)—- =Dy (a7 p (LD *
a9t i=1 i G
L 6 8 52 .
+ oD 3 ax [hygCk ) el
2 5y gh EK (byy

where p(X,T) is the response joint probability demnsity function, and a (X,7:
and bij(g.r) are the first and second incremental moments evaluated as
follows

limg L E(X,(x + 37) = X (D]

31(5,1)- At

A
-

by, (X, 0= Limg i CACRIOE NOEEACEFDE NN
In order to construct the Fokker-Planck equation of the present svstem the
coefficients a; and bij are evaluated. In view of the complicated analvtic-
al manipulations inveolved in this section and subsequent sections the
MACSYMA programming is used throughout the analysis of this paper. It :s
obvious that the system Fokker-Planck equation cannot be solved even for the
stationary case. Instead, one may generate a general first order differen-
tial equation describing the evolution of response joint moments of any

order. This equation is obtained by multiplving both side< of the Fokker-

Planck equation by the scalar function &(X)
N kly k2 k6 -
v(é) ’Xl XZ ....X6 ()

and integrating by parts over the entire state space - ® < X < +». The

boundary conditions are used
p(X = -») = p(X » =) =0 (239
The resulting moment equation is very long and it will not be listed in this
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paper. However, the general form of this equation is

m'y = Fy(my, mp, ..., mN, Dy ) (24)
In deriving the moment equation the following notation is adopted
By k2. k6 = Lo POKT) 2(X) dXdXy...dXg (25)

Equation (24) constitutes a set of infinite coupled equations. In other
words, the differential equation of order N contains moment terms of order N
and N+1. In reference [21], these equations were closed via a closure
scheme based on the assumption that the response process is very close to a
normal process. However, the system mean square responses revealed that the
nonlinear interaction took place only between two normal modes, instead of
three, although the system was tuned to the combination internal resonance.
In ;rder to clarify this deficiency the system response will be further

examined by a non-Gaussian closure based on the concept of cumulant-neglect.
VI. GAUSSIAN CLOSURE SOLUTION

This section briefly reviews the main results obtained in reference [21] for
the sake of completeness. The moment equations were closed by setting all

third order cumulants to zero, i.e.
\ 3
A3[xixjxk] = E[XinXk] -4 E{Xi]E[Xij] + ZE[Xi]E[Xj]E[Xk] = ( (26)

where the number over summation sign refers to the number of terms generated
in the form of the indicated expression without allowing permutation of
indices. Relation (26) is used to obtain expressions for third order momen-
ts in terms of first and second order moments. These expressions are then
used to close the second order moment equations generated from the general

equation (24). In this case one can generate 27 coupled equations in the
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first (6 equations) and second (21 equations) order moments. The solution
of the closed 27 coupled moment equations is obtained numerically by using
the IMSL DVERK Subroutine (Runge-Kutta-Verner fifth and sixth numerical
integration method. Depending on the value of internal detuning parameter r
the system response may be reduced to the linear response or may become
quasi-stationary which deviates significantly from the linear sclution. The
numerical integration is carried out on the IBM-308! computar which takes
61.08 seconds CPU time with accuracy 0.1D-06 for the case of quasi-
stationary solution (r = 1.18). Figure (4) presents the transient and
steady~state responses for 5 = 0.0, € = 0.05, and r = 1.12. The steady
state solution converges to the stationary linear solution derived in
reference [21]. For r = 1.18 the response significantly deviates from the
linear solution. Figures (5) and (6) show the transient and steady state
responses indicated by the dotted curves (G) for excitation spectral densitv
D/ZC3 = 1.0, damping ratios 5y =0.01, and nonlinear coupling parameter ¢ =
0.025 and 0.05, respectively. The transient response shows that the autopa-
rametric coupling takes place between the second and third normal modes in a
form of energy exchange. It is seen that the steady state response does not
achiave a stationary value but fluctuates between two limits. The values of
the two limits are divided by the linear solution and the ratios are plotted
against the detuning parametar r as shown in figs. (7) and (8) for two dif-
ferent values of the nonlinear coupling parameter ¢. The region of autopa-
rametric interaction is seen to become wider as the nonlinear coupling para-
meter increases and as the damping ratios &y decrease. These two figures
reveal the fact that the nonlinear interaction takes place within a small
range of internal detuning parameter around r = [.18 which is well remote

from the exact internal resonance r = 1.0. The authors have made several
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attempts to determine the response statistics under the condition of exact
internal resonance r =1.0. However, all numerical solutions converge to the
linear response and the Gaussian closure fails to predict any nonlinear
interaction between the three modes at r = 1.0. Inspection of the frequency
ratios w3/u5 R 93/uﬁ, and “5/w1' shown in fig. (9), reveal that at r =
1.18 the second and third modes are in exact intsrnal rasonance, i. e. u =

-

2w,. If one considers only the equations of motion which govern the non-

linear coupling of the second and third modes with the condition w3 = 2;2,
the systam moment equations are then reduced to 69 equations whose numeric3il
solutions coincides with the response presented in figs. (7) and (8). It is
obvious that the Gaussian closure scheme is not adequate to predict the

nonlinear three modal interaction and this is the main reason for conside-

ring the non-Gaussian closure approach in the next section.

VII. NON-GAUSSIAN CLOSURE SOLUTION
The non-Gaussian closure scheme takes into account the effect of non-
normality of the response probability density and thus is expected to
provide adequate modeling for the system nonlinear random response. As a
first order approximation the third and forth order cumulants will be
considersd in the analysis and all higher order cumulants are set to zero.
In this case one has to generate moment equations up to fourth order.
Fifth order moments which appear in the fourth order moment equations will
be replaced by fourth and lower order moments by using the relationship

5

xs[x XXXX]=EXXXXX]~] E[Xi]E[XJX

{ ik iam { ik im xlxm]

k

10 10
+27 z[xi]a[xj1z[xkx£xm1 -6} E[X,JE(X,]E[X, JE[X X ] (27)

15 10
+2 ) E{xi)z{xjxk}s{xzx_1 - z[xixJ]E[xkxlxnj

+ 26E[X JE[X,IE[X, [E[X, ]E(X,] :0

/6
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The number N of moment equations of order K is given by the relationship
(14]

N=n(n+ 1)(no+2)...(n+K - 1)/K! (28)

where n is the number of state coordinates X. For the present problem one
needs to generate 6 equations for first order moments, 21 equations for
second order, 56 equations for third order and 126 equations for fourth
order, with a total of 209 first order differential equations which are

closed by using relation (27).

The 209 differential equations are solved by numerical integration by using
the DVERK subroutine on the IBM3081 computer. For one complete time history
response the numerical integration took 748.48 seconds CPU time (i.e. over
12 times the CPU time of the Gaussian closure solution) with accuracy of
0.1D-06. Figures (5) and (6) show the transient and steady state responses
indicated by solid curves (NG) for r =1.18 which corresponds to two-modal
interaction between second and third modes. Again the transient response
shows nonlinear interaction in a form of energy exchange between second and
third normal modas. Contrary to the Gaussian closure solution, it is seen
that the steady state responsa achieves a strictly stationary solution. The
numerical integration is carried out for the 209 equations at r = 1.0 to
find out if the non-Gaussian closure predicts nonlinear three modal interac-
tion. Figure (10) shows the transient and steady state mean square response
for ci- 0.01, € = 0.05. The CPU time taken for one complete time history
record is 1414 seconds which is much longer than the CPU time for Gaussian
closure solution. The fluctuations observed in the transient response are
entirely dependent on the the initial conditions introduced in the numerical
algorithm. For example all response records obtained with zero initial

conditions do not show any fluctuations in the transient period.
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Since, the non-Gaussian closure scheme yields a stationary solution it is
possible to solve only for the steady state by setting the left hand sides
of the 209 equations to zerc and solve the resulting nonlinear algebraic
equations numerically. The numerical solution is carvied out by using the
ZSPOW (Solve a System of Nonlinear Equations) subroutine on the IBM-308]
computer. The solution is obtained by assuming initial guessing (approxi-
mate) values for the roots of the equations. Convergence of the solution is
reached when the initial roots are close to the exact solution. The deci-
sion of accepting valid roots is based on two main criteria. The first is
the non-negativenass of the even order moments, and the second is to satisfy
Schwarz's inequality. Another important criterion is the positiveness of
the joint probability density of the response coordinates especially at the
tails. However, in view of the problem complexity the authors did not ins-
pect this criterion. It is noteworthy to mention that once the solution is
obtained for one point, the solution of all subsequent points is generated
with less effort. The CPU time for one point solution varies between 40 and
60 saconds depending on the initial guessing values, with accuracy of

0.1D-06.

The steady state solution is plotted against the internal detuning parameter
r for various values of system parameters and excitation spectral density
level. Figures (11) through (15) show three- and two-modal nonlinear inter-
actions which occur at r = 1.0 and 1.18, respectively. It is seen that the
regions of autoparametric interaction become wider as the nonlinear coupling
parameter £ and excitation level D/ZS-increasa and as the damping ratios
decrease. For most system and excitation parameters used in fig. (11)

through (14) the two modal interaction is stronger than the three modal
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interaction. Significant three modal interaction arises for relatively lar-
ger values of the nonlinear coupling parameter t and small damping ratios 3,

as shown in fig. (15).

Since the main objective of this study is to examine the random response
charactaristics of three modal interaction, attention is focused on the
response characteristics in the neighborhood of exact internal resonance r =
1.0. The mean square rasponses of the three normal modes are plotted in
figs. (16) through (21) for various values of nonlinear coupling parameter ¢
and damping ratios Gy These figures demonstrate the development of complex
response characteristics as the nonlinear coupling parametar increases and
as the damping ratios decrease. The autoparametric interaction occurs
between the three modes in such a manner that the mean square responses of
the first two normal modes is always greater than the linear solution (>1.0)
while it is less for the third normal mode. This means that the nonlinear
interaction takes place between the first and second modes on one hand and
the third mode on the other hand. A new feature of considerable interest is
the contrast in the form of the mean square response curves above the exact
detuning ratio r > 1.0 for a certain combination of system parameters and
excitation level as shown in figs. (18) through (21). This is indicated by
the multiple solutions over a finite portion of the intermal detuning para-
meter. At points of vertical tangency the response mean squares exhibit the
jump and collapse phenomena indicated by the arrows AB and CD, respectively,
see fig. (18). Those solutions shown by the upper and lower branches BC and
AD are verified by numerical integration. However, all numerical integ-
ration attempts made at points very close to the middle branch AC converge
to either the upper or lower branches. This implies that the middle solu-

tion is always unstable which is analogous to a great extent to determinis-
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tic solutions of nonlinear systems. For systems with quadratic non-
linearity, the detarministic theory of nonlinear vibrations predicts similar

phenomena.

The well known saturation phenomenon reported by Nayfeh and Mook (4] does
not take place for dynamic systems with quadratic nonlinearity subjected to
wide band random excitation since the excitation includes a wide range of
frequencies which always excite the system normal modes. The influence of
the excitation spectral density level DIZEI upon the response mean squares
is shown in fig. (22) damping ratios &, = 0.002 and coupling parameter ¢ =
0.05. This figure shows that the system has three pcssible solutions for
the same excitation lavel only if the internal detuning is slightly shifted
from the exact internal resonance r = 1.0. At points of vertical tangency
the response mean square will experience the jump and collapse phenomena as

shown by the arrows AB and CD, respectively.

Figures (18) through (21) reveal that the region of internal detuning over
which multiple solutions take place is dependent on the nonlinear coupling
parameter and damping ratios of the three normal modes. In order to define
the region of multiple solutions a parametric study is carried out. The
results are shown in fig. (23) which displays a set of regions of multiple
solutions for various values of damping ratios. The threshold value of c¢*%
where the mean square responses bifurcate into multiple solutions is plotted

as a function of damping ratios g; in fig. (24).
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VIII. CONCLUSIONS

With the advent of computer algebra software, such as MACSYMA, REDUCE, and
FORMAC, complicated analyses of dynamic systems can be performed with less
human mistakes. In the area of nonlinear oscillations [5] computer svmbolic
manipulations are used to derive the basic differential equations of

motion of nonlinear systems and to transfer these equations into principal
coordinatas. It is believed that the symbolic computation will be widely

used in the near future to analvze nonlinear syvstems with large dimensions.

The MACSYMA software is used to analyze the nonlinear random modal inter-
action of a three-degree-of-freedom structural model in the neighborhood of
combination internal resonance of the summed type. The Fokker-Planck equa-
tion approach together with a non-Gaussian closure scheme are used to deter-
mine the response statistics. Contrary to the Gaussian closure scheme
results, the non-Gaussian closure vields several new features of response
characteristics. These include weak and strong three modal interaction,
multiple solutions, and jump phenomena. Multiple solutions only occur over
a finite region of internal detuning parameter which is slightly greater
than the exact internal resonance condition. At exact internal combination

resonance the system possesses a unique stable limit cycle.
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Fig.
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Fig.

Fig.

Fig.

(1)

(2)

(3)

(4)

(5)

(6)

(8)

(9)

(10)

(11)

(12)

Schematic diagram of the model.

Normal mode frequency ratios r = u;/(wl+w,) versus svstem
parameters wll/m33 for various of U,,/wq4t

Mode shapes corresponding to the combination internal rescnance
w3 = w1+w2.

Transient and steady mean square responses according to Gaussian
closure solutions for 7., = 0.0}, € = 0.05, and r = 1.12. The
steady state response converges to the stationary linear solution
at r = 1.12.

Transient (a) and steady state (b) responses according to Gaussian
(G) and non-Gaussian (NG) closure solutions, for ;. = 0.01,
£ = 0.025, wy/(w +w,) = 1.18, D/25; = 1.0. b

Transient (a) and steady state (b) responses according to Gaussian
(G) and non-Gaussian (NG) closure solutions, for = = 0.01,
€ = (.05, wB/(wl‘l'w.,) = 1,18, D/Z;3 = 1.0, -

Gaussian closure solution yields two-modal interaction between
second and third normal modes (¢ = 0.025, &= 0.01, D/Z;3 = 1.0)

Gaussian closure solution vields two-modal interaction between the
sacond and third normal modes (¢ = 0.05, Gy = 0.01, D/2;3 = 1.0)

Frequency ratios of two and three normal modes versus svstem
parameters for wzz/w33 = 1.4, mz/m1 = 0.5, m3/m1 = 5.0,
12/1l = 0.25.

Non-Gaussian closure of nonlinear three-modal interaction for
€ = 0.05, ci = 0.01, D/2;3 = 1.0.

Non-Gaussian closure solution showing two-modal interaction at
r = 1,18, and weak three-modal interaction at r = 1.0,
for ¢ = 0.025, _ 0.01, D/Zr,3 = 1.0.

Non-Gaussian closure solution showing two-modal interaction
at r = 1.18, and weak three-modal interaction at r = 1.0,
for € = 0.025, P 0.01, D/2c3 = 2.0.
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Fig. (13) Non-Gaussian closure solution showing two-modal interaction at
r = 1.18, and weak three-modal interaction at r = 1.0,
for ¢ = 0.05, :i = .01, D/ZZ’,3 = 1.0.
Fig. (14) Non-Gaussian closure solution showing two-modal interaction at
r = |.18, and weak three-modal interaction at r = 1.0,
for € = 0.06, Ci = 0.01, D/2:3 = 1.0,
r Fig. (15) Non-Gaussian closure solution showing two-modal interaction at
r = {.18, and three-modal interaction at r = 1.0,
3 for € = 0.05, ¢, = 0.003, D/2g, = 1.0.
Fig. (16) Non-Gaussian closure solution showing strong three-modal
interaction for & = 0.025, :i = 0.004, D/2:j-- 1.0.
Fig. (17) Non-Gaussian closure solution showing strong three-modal
interaction for € = (.05, Ci = 0.004, D/Z?;3 = 1.0.
Fig. (18) Manifestation of multiple solutions and jump phenomenon in three
modal interaction for & = (.05, Ci = (0.002, D/ZI;3 = 1.0,
! Fig. (19) Manifestation of multiple solutions and jump phenomenon in three
modal interaction for £ = (.05, ;i = (0.001, D/2:3 = 1.0.
Fig. (20) Manifestation of multiple solutions and jump phenomenon in three
modal interaction for £ = 0.075, 5 = 0.004, D/2c3'- 1.0.
b Fig. (21) Development of complex response in the third normal mode mean
I square for ¢ = 0,075, ci = 0.002, D/Zc3 = 1.0.
o
}
{ Fig. (22) Dependancy of mean square responses on the excitation spectral
density, a region of multiple solutions for = = (.05, ;i = 0.002.
4
Fig. (23) Region of multiple solutions for various values of Sy
Fig. (24) Threshold value of € above where the mean square responses have
multiple solutions.
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